最近一直在看 StreamGraph 生成的源码,刚好有点思路,准备动手了发现,
如果不说下 Transformation 后面的 StreamGraph 会差比较多意思,
所以先做点铺垫。
Transformation 类是 Flink 转换算子的基类,实现类有下面这些
AbstractMultipleInputTransformation
CoFeedbackTransformation
FeedbackTransformation
KeyedMultipleInputTransformation
LegacySourceTransformation
MultipleInputTransformation
OneInputTransformation
PartitionTransformation
PhysicalTransformation
SelectTransformation
SideOutputTransformation
SinkTransformation
SourceTransformation
SplitTransformation
TwoInputTransformation
UnionTransformation
类图:
从这些 Transformation 中也可以看出Flink 支持的转换类型: Source、Sink、一个输入、两个输入、多个输入、Union、侧输出、Select、分区 等转换操作
env.addSource(new SimpleStringSource)
调用 StreamExecutionEnvironment.scala 的 addSource 方法
def addSource[T: TypeInformation](function: SourceFunction[T]): DataStream[T] = {
require(function != null, "Function must not be null.")
val cleanFun = scalaClean(function)
val typeInfo = implicitly[TypeInformation[T]]
asScalaStream(javaEnv.addSource(cleanFun, typeInfo))
}
然后调用 javaEnv.addSource 方法
StreamExecutionEnvironment.java
public DataStreamSource.java 使用输入的 sourceName, operator, outTypeInfo, Parallelism 创建 LegacySourceTransformation public DataStreamSource( 最终调用到 DataStream.java 的 DataStream 方法,将生成的 LegacySourceTransformation 放入到 DataStream 中 public DataStream(StreamExecutionEnvironment environment, Transformation addSource 返回一个 DataStreamSource ,transformation 是 LegacySourceTransformation,并携带 StreamExecutionEnvironment 对象,继续后面算子的调用 stream 代码执行到 map 这一行时,会调用到 DataStream.scala 的 map 方法 def map[R: TypeInformation](fun: T => R): DataStream[R] = { 注: Flink 主要功能还是在 Java 代码中, Scala Api 就像个外壳,用 Scala 包装了一下,方便 Scala 代码调用,实际上还是会调用到 Java 代码上去 DataStream.java 的 map 方法 这里调用 transform 方法,要构建 Transformation 了,对于这个测试的写法来说, outputType 是 "String", Transformation 名是 "Map" SimpleOperatorFactory.of(operator)) 获取的工厂类是: SimpleUdfStreamOperatorFactory str => str 就是 Udf public DataStream.java 的 doTransform 方法创建 map 算子对于的 OneInputTransformation, 同时创建一个新的 DataStream: SingleOutputStreamOperator // 真正创建 Transformation 所以,执行完 map 后,返回的也是一个新的 DataStream,这不像有些用户,objectA.methodA().methodB() 每次都返回原来的 objectA public DataStreamSink DataStreamSink.java 创建 DataStreamSink 的时候,用当前的 DataStream 和 StreamSink 做参数, 当前的 DataStream 做为 StreamSink 的 input Transformation protected DataStreamSink(DataStream 在创建 Sink 的 DataStream 的时候,将 前一个算子生成的 DataStream 传入 做为了 Sink 的 input Transformation。 从 env.addSource.map.addSink 最简单的 Flink 程序,可以看到 Flink 创建 StreamGraph 前的 Transformation 生成过程,其他如: flatMap、filter、union、process 基本类似,其他如 join、window、forward 也相差不大 val join = process.join(map) 从 apply 追下去,会 看到 在 WindowedStream.java 的 apply 方法中 调用了 input.transform(opName, resultType, operator) 生成了 一个输出的 Transformation @PublicEvolving Transformation 就是 用户代码,转换成 Flink 算子的结果,Transformation 欢迎关注Flink菜鸟公众号,会不定期更新Flink(开发技术)相关的推文
return addSource(function, "Custom Source", typeInfo);
}
public
TypeInformation
boolean isParallel = function instanceof ParallelSourceFunction;
clean(function);
// 创建 StreamSource
final StreamSource
// 使用 StreamSource 创建 DataStreamSource 同时创建 Source 的Transformation 了, this 指 env
return new DataStreamSource<>(this, resolvedTypeInfo, sourceOperator, isParallel, sourceName);
}
StreamExecutionEnvironment environment,
TypeInformation
StreamSource
boolean isParallel,
String sourceName) {
super(environment, new LegacySourceTransformation<>(sourceName, operator, outTypeInfo, environment.getParallelism()));
this.isParallel = isParallel;
if (!isParallel) {
setParallelism(1);
}
}
this.envirOnment= Preconditions.checkNotNull(environment, "Execution Environment must not be null.");
this.transformation = Preconditions.checkNotNull(transformation, "Stream Transformation must not be null.");
}## map 算子看 Transformation
.map(str => str)
if (fun == null) {
throw new NullPointerException("Map function must not be null.")
}
val cleanFun = clean(fun)
val mapper = new MapFunction[T, R] {
def map(in: T): R = cleanFun(in)
}
// 又调用 map
map(mapper)
}
def map[R: TypeInformation](mapper: MapFunction[T, R]): DataStream[R] = {
if (mapper == null) {
throw new NullPointerException("Map function must not be null.")
}
val outType : TypeInformation[R] = implicitly[TypeInformation[R]]
// stream.map 调用到 DataStream.java 中了
asScalaStream(stream.map(mapper, outType).asInstanceOf[JavaStream[R]])
}
// 可以看到 transform ,这里的 outputType 是 String 了
return transform("Map", outputType, new StreamMap<>(clean(mapper)));
}
public
String operatorName,
TypeInformation
OneInputStreamOperator
return doTransform(operatorName, outTypeInfo, SimpleOperatorFactory.of(operator));
}
protected
String operatorName,
TypeInformation
StreamOperatorFactory
// read the output type of the input Transform to coax out errors about MissingTypeInfo
// 检验和设置 transformation 输出类型
transformation.getOutputType();
// 创建 一个输入的 Transformation, this.transformation 上一算子的 Transformation 做为 当前算子的 输入 Transformation
OneInputTransformation
this.transformation,
operatorName,
operatorFactory,
outTypeInfo,
environment.getParallelism());
@SuppressWarnings({"unchecked", "rawtypes"})
// 创建 一个输出的 StreamOperator 也是 DataStream, 也 携带 environment
SingleOutputStreamOperator
// 讲 创建的 Transformation 放到 ExecutionEnvironment 的 transformations 列表中
getExecutionEnvironment().addOperator(resultTransform);
// 返回 SingleOutputStreamOperator
return returnStream;
}## sink Transformation 的起始
// read the output type of the input Transform to coax out errors about MissingTypeInfo
// 检验输出和设置输出类型
transformation.getOutputType();
// configure the type if needed
// 检查输入方法类型
if (sinkFunction instanceof InputTypeConfigurable) {
((InputTypeConfigurable) sinkFunction).setInputType(getType(), getExecutionConfig());
}
// 创建一个 sinkOperator
StreamSink
// 使用 sinkOperator 创建 DataStreamSink , 同是创建 SinkTransformation
DataStreamSink
// 把 SinkTransformation 添加到 transformations
getExecutionEnvironment().addOperator(sink.getTransformation());
// 返回 DataStreamSink
return sink;
}
this.transformation = new SinkTransformation
}## 总结
比如:
.where(str => str)
.equalTo(str => str)
.window(TumblingProcessingTimeWindows.of(Time.minutes(1)))
.apply(new JoinFunction[String, String, String] {
override def join(first: String, second: String): String = {
first + ";" + second
}
})
public
String operatorName,
TypeInformation
OneInputStreamOperator
return doTransform(operatorName, outTypeInfo, SimpleOperatorFactory.of(operator));
}
protected
String operatorName,
TypeInformation
StreamOperatorFactory
// read the output type of the input Transform to coax out errors about MissingTypeInfo
transformation.getOutputType();
OneInputTransformation
this.transformation,
operatorName,
operatorFactory,
outTypeInfo,
environment.getParallelism());
@SuppressWarnings({"unchecked", "rawtypes"})
SingleOutputStreamOperator
getExecutionEnvironment().addOperator(resultTransform);
return returnStream;