热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

与dB相关的参数(B/dB/dBW/dBm/dBV/dBu)

分贝dB关于dB,源于很早的一个故事。发明电话的贝尔。在研究声强(单位面积上的声音功率)大小时发现,以人类能够听到的最小声

分贝dB

关于dB,源于很早的一个故事。
发明电话的贝尔。在研究声强(单位面积上的声音功率)大小时发现,以人类能够听到的最小声音------一般指3m外蚊子的声音产生的声强为基准,自然界最强的能够将人耳震聋的声音,是这个基准的上亿倍。如果用常规比值表达,需要的数值范围太大。
因此,他定义了一个新方法,用于描述两个功率或者能量的比值:
在这里插入图片描述
即对原有的比值取以10为底的对数,单位为一个无量纲单位B,即贝尔。

在电子学领域,这个定义常用于描述一个放大器的功率放大倍数。
而在其他领域,它适用于任何以功率,能量为单位物理量相互之间的比值。

比如一个功率放大器,输入功率为1mW,输出为1W,其功率放大倍数 Ap=1000,
也可以表达为:

在这里插入图片描述

这样,当我们说一个功率放大器的功率增益为1000倍时,也可以说它的功率增益是3B.

后来,越来越多的实例证明,贝尔这个单位有点大,于是,贝尔的1/10---------分贝(Decibel)就诞生了,用dB表示。
对于上述表达式,就可以写作:
在这里插入图片描述
对于前面的例子,可以写作:
在这里插入图片描述

为什么电压增益是20倍lg

当一个功率放大器具有确定的功率增益时,如果输入端负载和输出端负载大小相等,则有下式成立:

在这里插入图片描述
定义者希望,一个30dB的功率放大器,其电压增益也应该时30dB,这样就统一了。
因此,放大器的电压增益如果用dB表述,就应该乘以20而不是10.

比如上述例子中,如果功率增益为1000倍,即30dB,那么电压增益应该是1000\sqrt 10001

000 =31.62倍,用下式就可以得到电压增益也是30dB

在这里插入图片描述
所以,涉及功率或者能量增益的,都是10倍log来表述分贝数;涉及幅度增益的,都用20倍log来表述分贝数,无论是电压增益,还是电流增益。
比如信噪比,是信号电压有效值与噪声电压有效值的比值,就可以用dB表示:
在这里插入图片描述

dBW和dBm

这是描述功率大小的值。
dBW是一个功率P为1W的倍数的分贝表述。
dBm是一个功率P为1mW的倍数的分贝表述。
在这里插入图片描述
在这里插入图片描述
比如,200mW功率可以表述为23.01dBm,也可以表述为-6.99dBW。注意两者之间相差30dB。

dBV和dBu

这是描述信号电压大小的值。
dBV是一个电压E是1V的倍数的分贝表述。
dBu是一个电压E是0.775V的倍数的分贝表述。
这里的电压都指有效值。
在这里插入图片描述
比如一个信号,其有效值电压E为10V,则它可以表示成E=20dBV,也可以表示成E=22.21dBu。

为什么用0.775V?
其实这源自音频测试时的一个标准电阻,多年以来一直惯用600Ω作为负载,当有效值电压为0.775V时,其消耗功率正好为1mW(0.775x0.775/0.6)。
更精确的值应为0.6的开方,即0.7746V。

用dBm表示电压大小

有些信号源,用dBm表示输出电压大小;有些晶体管毫伏表,也用dBm表示测量的有效电压大小。
看起来不靠谱,因为dBm原本是表示功率大小的。但是,如果规定了负载电阻,这种表示方法就靠谱了。

一个有效值电压为XVrms的信号,加载到指定负载R上,产生YdBm的功率,关系为
在这里插入图片描述
反推关系为
在这里插入图片描述
几乎所有使用这种表示方法的仪器,都会注明假定负载的大小,有些规定为50Ω,有些规定为600Ω。

比如某个信号源,规定负载为50Ω,那么设定输出有效值为0.1Vrms的正弦波,用dBm表示则为

在这里插入图片描述某毫伏表测量结果为-11.83dBm,规定电阻是600Ω,则用电压表示为

在这里插入图片描述
如果用前述正规的dBV表示,则为
20xlg(0.198V/1V)=-14.05dBV

dBc和dBFS

相对于载波,或者相对于基波信号的分贝值,用dBc表示。
相对于满幅度的分贝值,用dBFS表示。


推荐阅读
  • 本文详细介绍了如何使用C#实现不同类型的系统服务账户(如Windows服务、计划任务和IIS应用池)的密码重置方法。 ... [详细]
  • ArcBlock 发布 ABT 节点 1.0.31 版本更新
    2020年11月9日,ArcBlock 区块链基础平台发布了 ABT 节点开发平台的1.0.31版本更新,此次更新带来了多项功能增强与性能优化。 ... [详细]
  • 本文详细介绍了如何在 Ubuntu 14.04 系统上搭建仅使用 CPU 的 Caffe 深度学习框架,包括环境准备、依赖安装及编译过程。 ... [详细]
  • 本文详细介绍了 Redis 中的主要数据类型,包括 String、Hash、List、Set、ZSet、Geo 和 HyperLogLog,并提供了每种类型的基本操作命令和应用场景。 ... [详细]
  • 本笔记记录了几个典型的 LeetCode 编程题目及其解决方案,包括使用两个栈实现队列、计算斐波那契数列、青蛙跳台阶问题以及寻找旋转排序数组中的最小值。 ... [详细]
  • 本文探讨了Python类型注解使用率低下的原因,主要归结于历史背景和投资回报率(ROI)的考量。文章不仅分析了类型注解的实际效用,还回顾了Python类型注解的发展历程。 ... [详细]
  • 解决Win10 1709版本文件共享安全警告问题
    每当Windows 10发布新版本时,由于兼容性问题往往会出现各种故障。近期,一些用户在升级至1709版本后遇到了无法访问共享文件夹的问题,系统提示‘文件共享不安全,无法连接’。本文将提供多种解决方案,帮助您轻松解决这一难题。 ... [详细]
  • 本文详细探讨了 TensorFlow 中 `tf.identity` 函数的作用及其应用场景,通过对比直接赋值与使用 `tf.identity` 的差异,帮助读者更好地理解和运用这一函数。 ... [详细]
  • OpenCV中的霍夫圆检测技术解析
    本文详细介绍了如何使用OpenCV库中的HoughCircles函数实现霍夫圆检测,并提供了具体的代码示例及参数解释。 ... [详细]
  • Pacing设置在性能测试中扮演着至关重要的角色,它直接影响到模拟用户行为的真实性和测试结果的准确性。本文将探讨Pacing设置的不同方法及其应用场景,帮助测试人员更好地理解和利用这一功能。 ... [详细]
  • 在测试软件或进行系统维护时,有时会遇到电脑蓝屏的情况,即便使用了沙盒环境也无法完全避免。本文将详细介绍常见的蓝屏错误代码及其解决方案,帮助用户快速定位并解决问题。 ... [详细]
  • 本文介绍了如何利用OpenCV库进行图像的边缘检测,并通过Canny算法提取图像中的边缘。随后,文章详细说明了如何识别图像中的特定形状(如矩形),并应用四点变换技术对目标区域进行透视校正。 ... [详细]
  • hlg_oj_1116_选美大赛这题是最长子序列,然后再求出路径就可以了。开始写的比较乱,用数组什么的,后来用了指针就好办了。现在把代码贴 ... [详细]
  • 在中标麒麟操作系统上部署达梦数据库及导入SQL文件
    本文档详细介绍了如何在中标麒麟操作系统上安装达梦数据库,并提供了导入SQL文件的具体步骤。首先,检查系统的发行版和内核版本,接着创建必要的用户和用户组,规划数据库安装路径,挂载安装介质,调整系统限制以确保数据库的正常运行,最后通过图形界面完成数据库的安装。 ... [详细]
  • 本文探讨了如何在PHP与MySQL环境中实现高效的分页查询,包括基本的分页实现、性能优化技巧以及高级的分页策略。 ... [详细]
author-avatar
QFWQF2010_899
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有