热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

用Scrapy爬虫框架爬取食品论坛数据并存入数据库

导读这篇文章主要给大家介绍了食品网站的数据采集和存储过程,详解了如何分析网页结构、爬虫策略、网站类型、层级关系、爬虫方法和数据存储过程,最终实现将帖子的每条评论爬取到数据库中,并且
导读 这篇文章主要给大家介绍了食品网站的数据采集和存储过程,详解了如何分析网页结构、爬虫策略、网站类型、层级关系、爬虫方法和数据存储过程,最终实现将帖子的每条评论爬取到数据库中,并且做到可以更新数据,防止重复爬取,反爬等,干货满满。

网络爬虫(又称为网页蜘蛛,网络机器人),是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本。另外一些不常使用的名字还有蚂蚁、自动索引、模拟程序或者蠕虫。------百度百科

说人话就是,爬虫是用来海量规则化获取数据,然后进行处理和运用,在大数据、金融、机器学习等等方面都是必须的支撑条件之一。

目前在一线城市中,爬虫的岗位薪资待遇都是比较客观的,之后提升到中、高级爬虫工程师,数据分析师、大数据开发岗位等,都是很好的过渡。

本此介绍的项目其实不用想的太过复杂,最终要实现的目标也就是将帖子的每条评论爬取到数据库中,并且做到可以更新数据,防止重复爬取,反爬等措施。

这部分主要是介绍本文需要用到的工具,涉及的库,网页等信息等

软件:PyCharm

需要的库:Scrapy, selenium, pymongo, user_agent,datetime

目标网站:

http://bbs.foodmate.net 

插件:chromedriver(版本要对)

简而言之:确定网站的加载方式,怎样才能正确的一级一级的进入到帖子中抓取数据,使用什么格式保存数据等。

其次,观察网站的层级结构,也就是说,怎么根据板块,一点点进入到帖子页面中,这对本次爬虫任务非常重要,也是主要编写代码的部分。

目前我知道的爬虫方法大概有如下(不全,但是比较常用):

1)request框架:运用这个http库可以很灵活的爬取需要的数据,简单但是过程稍微繁琐,并且可以配合抓包工具对数据进行获取。但是需要确定headers头以及相应的请求参数,否则无法获取数据;很多app爬取、图片视频爬取随爬随停,比较轻量灵活,并且高并发与分布式部署也非常灵活,对于功能可以更好实现。

2)scrapy框架:scrapy框架可以说是爬虫最常用,最好用的爬虫框架了,优点很多:scrapy 是异步的;采取可读性更强的 xpath 代替正则;强大的统计和 log 系统;同时在不同的 url 上爬行;支持 shell 方式,方便独立调试;支持写 middleware方便写一些统一的过滤器;可以通过管道的方式存入数据库等等。这也是本次文章所要介绍的框架(结合selenium库)。

首先解释一下是什么意思,看什么网站,首先要看网站的加载方式,是静态加载,还是动态加载(js加载),还是别的方式;根据不一样的加载方式需要不同的办法应对。然后我们观察今天爬取的网站,发现这是一个有年代感的论坛,首先猜测是静态加载的网站;我们开启组织 js 加载的插件,如下图所示。

用Scrapy爬虫框架爬取食品论坛数据并存入数据库

刷新之后发现确实是静态网站(如果可以正常加载基本都是静态加载的)。

其次,我们今天要爬取的网站是食品论坛网站,是静态加载的网站,在之前分析的时候已经了解了,然后是层级结构:

用Scrapy爬虫框架爬取食品论坛数据并存入数据库

大概是上面的流程,总共有三级递进访问,之后到达帖子页面,如下图所示。

用Scrapy爬虫框架爬取食品论坛数据并存入数据库

部分代码展示:

一级界面:

def parse(self, response): 
    self.logger.info("已进入网页!") 
    self.logger.info("正在获取版块列表!") 
    column_path_list = response.css('#ct > div.mn > div:nth-child(2) > div')[:-1] 
    for column_path in column_path_list: 
        col_paths = column_path.css('div > table > tbody > tr > td > div > a').xpath('@href').extract() 
        for path in col_paths: 
            block_url = response.urljoin(path) 
            yield scrapy.Request( 
                url=block_url, 
                callback=self.get_next_path, 
            ) 

二级界面:

def get_next_path(self, response): 
    self.logger.info("已进入版块!") 
    self.logger.info("正在获取文章列表!") 
    if response.url == 'http://www.foodmate.net/know/': 
        pass 
    else: 
        try: 
            nums = response.css('#fd_page_bottom > div > label > span::text').extract_first().split(' ')[-2] 
        except: 
            nums = 1 
        for num in range(1, int(nums) + 1): 
            tbody_list = response.css('#threadlisttableid > tbody') 
            for tbody in tbody_list: 
                if 'normalthread' in str(tbody): 
                    item = LunTanItem() 
                    item['article_url'] = response.urljoin( 
                        tbody.css('* > tr > th > a.s.xst').xpath('@href').extract_first()) 
                    item['type'] = response.css( 
                        '#ct > div > div.bm.bml.pbn > div.bm_h.cl > h1 > a::text').extract_first() 
                    item['title'] = tbody.css('* > tr > th > a.s.xst::text').extract_first() 
                    item['spider_type'] = "论坛" 
                    item['source'] = "食品论坛" 
                    if item['article_url'] != 'http://bbs.foodmate.net/': 
                        yield scrapy.Request( 
                            url=item['article_url'], 
                            callback=self.get_data, 
                            meta={'item': item, 'content_info': []} 
                        ) 
        try: 
            callback_url = response.css('#fd_page_bottom > div > a.nxt').xpath('@href').extract_first() 
            callback_url = response.urljoin(callback_url) 
            yield scrapy.Request( 
                url=callback_url, 
                callback=self.get_next_path, 
            ) 
        except IndexError: 
            pass 

三级界面:

def get_data(self, response): 
    self.logger.info("正在爬取论坛数据!") 
    item = response.meta['item'] 
    content_list = [] 
    divs = response.xpath('//*[@id="postlist"]/div') 
    user_name = response.css('div > div.pi > div:nth-child(1) > a::text').extract() 
    publish_time = response.css('div.authi > em::text').extract() 
    floor = divs.css('* strong> a> em::text').extract() 
    s_id = divs.xpath('@id').extract() 
    for i in range(len(divs) - 1): 
        cOntent= '' 
        try: 
 
            strOng= response.css('#postmessage_' + s_id[i].split('_')[-1] + '').xpath('string(.)').extract() 
            for s in strong: 
                content += s.split(';')[-1].lstrip('/r/n') 
            datas = dict(cOntent=content,  # 内容 
                         reply_id=0,  # 回复的楼层,默认0 
                         user_name=user_name[i],  # ⽤户名 
                         publish_time=publish_time[i].split('于 ')[-1],  # %Y-%m-%d %H:%M:%S' 
                         id='#' + floor[i],  # 楼层 
                         ) 
            content_list.append(datas) 
        except IndexError: 
            pass 
    item['content_info'] = response.meta['content_info'] 
    item['scrawl_time'] = datetime.now().strftime('%Y-%m-%d %H:%M:%S') 
    item['content_info'] += content_list 
 
    data_url = response.css('#ct > div.pgbtn > a').xpath('@href').extract_first() 
    if data_url != None: 
        data_url = response.urljoin(data_url) 
        yield scrapy.Request( 
            url=data_url, 
            callback=self.get_data, 
            meta={'item': item, 'content_info': item['content_info']} 
        ) 
    else: 
        item['scrawl_time'] = datetime.now().strftime('%Y-%m-%d %H:%M:%S') 
        self.logger.info("正在存储!") 
        print('储存成功') 
        yield item 

由于是静态网页,首先决定采用的是scrapy框架直接获取数据,并且通过前期测试发现方法确实可行,不过当时年少轻狂,小看了网站的保护措施,由于耐心有限,没有加上定时器限制爬取速度,导致我被网站加了限制,并且网站由静态加载网页变为:动态加载网页验证算法之后再进入到该网页,直接访问会被后台拒绝。

但是这种问题怎么会难道我这小聪明,经过我短暂地思考(1天),我将方案改为scrapy框架 + selenium库的方法,通过调用chromedriver,模拟访问网站,等网站加载完了再爬取不就完了,后续证明这个方法确实可行,并且效率也不错。

实现部分代码如下:

def process_request(self, request, spider): 
    chrome_optiOns= Options() 
    chrome_options.add_argument('--headless')  # 使用无头谷歌浏览器模式 
    chrome_options.add_argument('--disable-gpu') 
    chrome_options.add_argument('--no-sandbox') 
    # 指定谷歌浏览器路径 
    self.driver = webdriver.Chrome(chrome_optiOns=chrome_options, 
                                   executable_path='E:/pycharm/workspace/爬虫/scrapy/chromedriver') 
    if request.url != 'http://bbs.foodmate.net/': 
        self.driver.get(request.url) 
        html = self.driver.page_source 
        time.sleep(1) 
        self.driver.quit() 
        return scrapy.http.HtmlResponse(url=request.url, body=html.encode('utf-8'), encoding='utf-8', 
                                        request=request) 

这部分不用多说,根据自己需求,将需要爬取的数据格式设置在items.py中。在工程中引用该格式保存即可

class LunTanItem(scrapy.Item): 
    """ 
        论坛字段 
    """ 
    title = Field()  # str: 字符类型 | 论坛标题 
    content_info = Field()  # str: list类型 | 类型list: [LunTanContentInfoItem1, LunTanContentInfoItem2] 
    article_url = Field()  # str: url | 文章链接 
    scrawl_time = Field()  # str: 时间格式 参照如下格式 2019-08-01 10:20:00 | 数据爬取时间 
    source = Field()  # str: 字符类型 | 论坛名称 eg: 未名BBS, 水木社区, 天涯论坛 
    type = Field()  # str: 字符类型 | 板块类型 eg: '财经', '体育', '社会' 
    spider_type = Field()  # str: forum | 只能写 'forum' 

本次项目选择保存的数据库为mongodb,由于是非关系型数据库,优点显而易见,对格式要求没有那么高,可以灵活储存多维数据,一般是爬虫优选数据库(不要和我说redis,会了我也用,主要是不会)

代码:

import pymongo 
 
class FMPipeline(): 
    def __init__(self): 
        super(FMPipeline, self).__init__() 
        # client = pymongo.MongoClient('139.217.92.75') 
        client = pymongo.MongoClient('localhost') 
        db = client.scrapy_FM 
        self.collection = db.FM 
 
    def process_item(self, item, spider): 
        query = { 
            'article_url': item['article_url'] 
        } 
        self.collection.update_one(query, {"$set": dict(item)}, upsert=True) 
        return item 

这时,有聪明的盆友就会问:如果运行两次爬取到了一样的数据怎么办呢?(换句话说就是查重功能)

这个问题之前我也没有考虑,后来在我询问大佬的过程中知道了,在我们存数据的时候就已经做完这件事了,就是这句:

query = { 
    'article_url': item['article_url'] 
} 
self.collection.update_one(query, {"$set": dict(item)}, upsert=True) 

通过帖子的链接确定是否有数据爬取重复,如果重复可以理解为将其覆盖,这样也可以做到更新数据。

像多线程、headers头,管道传输顺序等问题,都在settings.py文件中设置,具体可以参考小编的项目去看,这里不再赘述。

1、点击运行,结果显示在控制台,如下图所示。

用Scrapy爬虫框架爬取食品论坛数据并存入数据库

2、中间会一直向队列中堆很多帖子的爬取任务,然后多线程处理,我设置的是16线程,速度还是很可观的。

用Scrapy爬虫框架爬取食品论坛数据并存入数据库

用Scrapy爬虫框架爬取食品论坛数据并存入数据库

content_info中存放着每个帖子的全部留言以及相关用户的公开信息。

1、这篇文章主要给大家介绍了食品网站的数据采集和存储过程,详解了如何分析网页结构、爬虫策略、网站类型、层级关系、爬虫方法和数据存储过程,最终实现将帖子的每条评论爬取到数据库中,并且做到可以更新数据,防止重复爬取,反爬等,干货满满。

2、本次项目总的来说,不是特别难搞,只要思路对了,找到了数据规则,爬起来可以说易如反掌,觉得难只是之前没有完整走过流程,有了这次比较水的介绍,希望能对你有所帮助,那将是我最大的荣幸。

3、遇到问题首先想的不是问同事,朋友,老师,而是去谷歌,百度,看有没有相似的情况,看别人的经历,一定要学会自己发现问题,思考问题,解决问题,这对于之后工作有非常大的帮助(我之前就被说过还没有脱离学生时代,就是我喜欢问同事),等网上查询了一定资料了,还是没有头绪,再去问别人,别人也会比较愿意帮助你的~


推荐阅读
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 对象存储与块存储、文件存储等对比
    看到一篇文档,讲对象存储,好奇,搜索文章,摘抄,学习记录!背景:传统存储在面对海量非结构化数据时,在存储、分享与容灾上面临很大的挑战,主要表现在以下几个方面:传统存储并非为非结 ... [详细]
  • 本文介绍如何使用 Python 计算两个时间戳之间的时间差,并将其转换为毫秒。示例代码展示了如何通过 `time` 和 `datetime` 模块实现这一功能。 ... [详细]
  • selenium通过JS语法操作页面元素
    做过web测试的小伙伴们都知道,web元素现在很多是JS写的,那么既然是JS写的,可以通过JS语言去操作页面,来帮助我们操作一些selenium不能覆盖的功能。问题来了我们能否通过 ... [详细]
  • 本文由公众号【数智物语】(ID: decision_engine)发布,关注获取更多干货。文章探讨了从数据收集到清洗、建模及可视化的全过程,介绍了41款实用工具,旨在帮助数据科学家和分析师提升工作效率。 ... [详细]
  • MVC模式下的电子取证技术初探
    本文探讨了在MVC(模型-视图-控制器)架构下进行电子取证的技术方法,通过实际案例分析,提供了详细的取证步骤和技术要点。 ... [详细]
  • Awk是一款功能强大的文本分析与处理工具,尤其在数据解析和报告生成方面表现突出。它通过读取由换行符分隔的记录,并按照指定的字段分隔符来划分和处理这些记录,从而实现复杂的数据操作。 ... [详细]
  • 本文详细探讨了BCTF竞赛中窃密木马题目的解题策略,重点分析了该题目在漏洞挖掘与利用方面的技巧。 ... [详细]
  • 本文整理了关于Sia去中心化存储平台的重要网址和资源,旨在为研究者和用户提供全面的信息支持。 ... [详细]
  • Excel 数据分析基础
    Excel 是数据分析中最基本且强大的工具之一,具备多种实用功能和操作方法。本文将简要介绍 Excel 的不同版本及其兼容性问题,并探讨在处理大数据时的替代方案。 ... [详细]
  • 解决Bootstrap DataTable Ajax请求重复问题
    在最近的一个项目中,我们使用了JQuery DataTable进行数据展示,虽然使用起来非常方便,但在测试过程中发现了一个问题:当查询条件改变时,有时查询结果的数据不正确。通过FireBug调试发现,点击搜索按钮时,会发送两次Ajax请求,一次是原条件的请求,一次是新条件的请求。 ... [详细]
  • 本文探讨了如何有效地构建和优化微信公众平台账号,涵盖了用户信息管理、内容创作与发布、互动策略及数据分析等方面。通过合理设置用户信息字段,如用户名、昵称、密码、真实姓名和性别等,确保账号的安全性和用户体验。同时,文章还介绍了如何利用微信公众平台的各项功能,提升用户参与度和品牌影响力。 ... [详细]
  • 本文详细介绍了如何利用 Bootstrap Table 实现数据展示与操作,包括数据加载、表格配置及前后端交互等关键步骤。 ... [详细]
  • 从财务转型为数据分析师的两年历程
    本文作者小尧,曾在税务师事务所工作,后成功转型为数据分析师。本文分享了他如何确定职业方向、积累行业知识,并最终实现转型的经验。 ... [详细]
  • 使用 Jupyter Notebook 实现 Markdown 编写与代码运行
    Jupyter Notebook 是一个开源的基于网页的应用程序,允许用户在同一文档中编写 Markdown 文本和运行多种编程语言的代码,并实时查看运行结果。 ... [详细]
author-avatar
mobiledu2502886443
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有