热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

用线性回归方法计算直线斜率

最近在做设备负载预测,考虑到负载波动,需要拿出近似增长率来计算未来数天的设备负载增长状况,想想看以前的数学都没有学好,算法也没有搞好,只能求助同事和百度Google
最近在做设备负载预测,考虑到负载波动,需要拿出近似增长率来计算未来数天的设备负载增长状况,想想看以前的数学都没有学好,算法也没有搞好,只能求助同事和百度Google,最终还是折腾出来了。
点分布和趋近的直线

点分布和趋近的直线


  关于线性回归可以参考百度知道。其中采用最小二乘法可以比较容易的算出过往设备负载增长的斜率,具体公式如下:
最小二乘法公式

最小二乘法公式


  下面代码简单枚举历史10个点来计算该设备负载增长率:


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
//Y坐标值表示设备历史负载
$y=array(52.09, 52.4, 53.29, 54.22, 55.15, 55.83, 56.89, 56.98, 57.55, 57.8);
  
//X坐标值表示顺序天数
$x=array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
  
//计算X和Y均值
$ax=array_sum($x)/count($x);
$ay=array_sum($y)/count($y);
  
//计算斜率公式中的分母(em)和分子(ez)
$em= 0;
$ez= 0;
for($i= 0;$i
    //分母求和
    $em+= (($x[$i] -$ax) * ($y[$i] -$ay));
    //分子求和
    $ez+= pow(($x[$i] -$ax), 2);
}
  
//斜率0.69
echo$em/$ez;
  
//第十一个点预测负载值58.34
echo$em/$ez* 10 +$ay- ($em/$ez)*$ax;

  很多概念都不甚懂,反正数学是没有学好的,找来公式代一代,嘿嘿,还算可以,对于波动比较大的就比较难以预测,这个近似值还是很有参考意义的。


推荐阅读
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 本文将介绍如何编写一些有趣的VBScript脚本,这些脚本可以在朋友之间进行无害的恶作剧。通过简单的代码示例,帮助您了解VBScript的基本语法和功能。 ... [详细]
  • 计算机网络复习:第五章 网络层控制平面
    本文探讨了网络层的控制平面,包括转发和路由选择的基本原理。转发在数据平面上实现,通过配置路由器中的转发表完成;而路由选择则在控制平面上进行,涉及路由器中路由表的配置与更新。此外,文章还介绍了ICMP协议、两种控制平面的实现方法、路由选择算法及其分类等内容。 ... [详细]
  • 本文将介绍如何使用 Go 语言编写和运行一个简单的“Hello, World!”程序。内容涵盖开发环境配置、代码结构解析及执行步骤。 ... [详细]
  • 本文介绍如何利用动态规划算法解决经典的0-1背包问题。通过具体实例和代码实现,详细解释了在给定容量的背包中选择若干物品以最大化总价值的过程。 ... [详细]
  • 本文介绍了在使用Visual Studio 2015进行项目开发时,遇到类向导弹出“异常来自 HRESULT:0x8CE0000B”错误的解决方案。通过具体步骤和实践经验,帮助开发者快速排查并解决问题。 ... [详细]
  • 题目描述:给定n个半开区间[a, b),要求使用两个互不重叠的记录器,求最多可以记录多少个区间。解决方案采用贪心算法,通过排序和遍历实现最优解。 ... [详细]
  • 深入理解Java中的volatile、内存屏障与CPU指令
    本文详细探讨了Java中volatile关键字的作用机制,以及其与内存屏障和CPU指令之间的关系。通过具体示例和专业解析,帮助读者更好地理解多线程编程中的同步问题。 ... [详细]
  • 如何在PHPcms网站中添加广告
    本文详细介绍了在PHPcms网站后台添加广告的方法,涵盖多种常见的广告形式,如百度广告和Google广告,并提供了相关设置的步骤。同时,文章还探讨了优化网站流量的SEO策略。 ... [详细]
  • 深入理解C++中的KMP算法:高效字符串匹配的利器
    本文详细介绍C++中实现KMP算法的方法,探讨其在字符串匹配问题上的优势。通过对比暴力匹配(BF)算法,展示KMP算法如何利用前缀表优化匹配过程,显著提升效率。 ... [详细]
  • 深入解析:手把手教你构建决策树算法
    本文详细介绍了机器学习中广泛应用的决策树算法,通过天气数据集的实例演示了ID3和CART算法的手动推导过程。文章长度约2000字,建议阅读时间5分钟。 ... [详细]
  • Python自动化处理:从Word文档提取内容并生成带水印的PDF
    本文介绍如何利用Python实现从特定网站下载Word文档,去除水印并添加自定义水印,最终将文档转换为PDF格式。该方法适用于批量处理和自动化需求。 ... [详细]
  • 360SRC安全应急响应:从漏洞提交到修复的全过程
    本文详细介绍了360SRC平台处理一起关键安全事件的过程,涵盖从漏洞提交、验证、排查到最终修复的各个环节。通过这一案例,展示了360在安全应急响应方面的专业能力和严谨态度。 ... [详细]
  • 本文深入探讨了Linux系统中网卡绑定(bonding)的七种工作模式。网卡绑定技术通过将多个物理网卡组合成一个逻辑网卡,实现网络冗余、带宽聚合和负载均衡,在生产环境中广泛应用。文章详细介绍了每种模式的特点、适用场景及配置方法。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
author-avatar
泽旺多吉外_680
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有