热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

英文论文(sci)解读复现【NO.5】让RepVGG再次变得更强大:一种量化感知方法

此前出了目标检测算法改进专栏,但是对于应用于什么场景,需要什么改进方法对应与自己的应用场景有效果,并且多少改进点能发什么水平的文章



此前出了目标检测算法改进专栏,但是对于应用于什么场景,需要什么改进方法对应与自己的应用场景有效果,并且多少改进点能发什么水平的文章,为解决大家的困惑,此系列文章旨在给大家解读发表高水平学术期刊中的
SCI论文,并对相应的SCI期刊进行介绍,帮助大家解答疑惑,助力科研论文投稿。解读的系列文章,本人会进行
创新点代码复现,有需要的朋友可关注私信我获取。







一、摘要

性能和推理速度之间的折衷对于实际应用是至关重要的。结构重新参数化获得了更好的折衷,并且它正在成为现代卷积神经网络中越来越受欢迎的成分。尽管如此,当需要INT 8推断时,其量化性能通常太差而无法部署(例如,ImageNet上的top-1精度下降超过20%)。在本文中,我们深入研究了这种失效的潜在机制,即原始设计不可避免地增大了量化误差。我们提出了一个简单、健壮、有效的补救措施,以获得一个量化友好的结构,同时也享有重新参数化的好处。我们的方法极大地弥补了RepVGG的INT 8和FP 32精度之间差距。在没有花里胡哨的情况下,通过标准的训练后量化,ImageNet上排名前1的精度下降减少到2%以内。

二、网络模型及核心创新点








  1. 揭示了在量化RepVGG 等基于重新参数化的架构时性能崩溃的根本原因。


  1. 设计了RepVGG的量化友好替代品(即QARepVGG),其在权重和激活分布方面具有根本差异,同时保留了速度和性能权衡突出的优势。


  1. 我们提出的方法在不同的模型尺度和不同的视觉任务上都有很好的泛化能力,实现了出色的后量化性能,可以随时部署。此外,我们的模型在FP32精度方面与RepVGG相当。

三、实验效果(部分展示)

我们的实验主要集中在ImageNet数据集上。最后,基于最近流行的检测器YOLOv6 验证了该方法的通用性,该检测器广泛采用了重新参数化设计。

1.所有模型均经过120个时期的训练,全球批量为256。我们使用的SGD优化器动量为0.9,权重衰减为10−4。学习速率初始化为0.1,然后按照余弦策略衰减到零。我们还遵循简单的数据扩充,如[11]。所有实验均在8个Tesla-V100 GPU上完成。







我们观察到具有群卷积的RepVGG的表现要差得多。PTQ后RepVGG-B2 g4的准确度从78.5%下降至13.7%(64.8%↓)。然而,我们的QARepVGG-B2 g4仅损失0.7%的准确度,表明其对其他规模和变体的稳健性。

2.消融研究-变体架构设计。我们研究了不同设计的量化性能,结果如表5所示。







注意,当BN被完全移除时,模型不能收敛。虽然BN后的设置只有71.1%的INT8 top-1精度,但其FP32精度较低。量化间隙随着模型容量的增长(从A0到B0)而增大,这不赞成这种方法。

五、实验结论

通过理论和定量分析,我们剖析了著名的基于重参数化的结构RepVGG的量子化失败.它的结构缺陷不可避免地放大了量化误差,并且累积地产生较差的结果。我们重新设计了QARepVGG,它可以生成有利于量化的权重和激活分布。QARepVGG大大简化了最终部署的量化过程。强调建筑设计中的量化意识应引起重视。

注:论文原文出自 本文仅用于学术分享,如有侵权,请联系后台作删文处理。


解读的系列文章,本人已进行创新点代码复现,有需要的朋友欢迎关注私信我获取







推荐阅读
  • 探索电路与系统的起源与发展
    本文回顾了电路与系统的发展历程,从电的早期发现到现代电子器件的应用。文章不仅涵盖了基础理论和关键发明,还探讨了这一学科对计算机、人工智能及物联网等领域的深远影响。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 机器学习核心概念与技术
    本文系统梳理了机器学习的关键知识点,涵盖模型评估、正则化、线性模型、支持向量机、决策树及集成学习等内容,并深入探讨了各算法的原理和应用场景。 ... [详细]
  • 2017年人工智能领域的十大里程碑事件回顾
    随着2018年的临近,我们一同回顾过去一年中人工智能领域的重要进展。这一年,无论是政策层面的支持,还是技术上的突破,都显示了人工智能发展的迅猛势头。以下是精选的2017年人工智能领域最具影响力的事件。 ... [详细]
  • 本文档旨在帮助开发者回顾游戏开发中的人工智能技术,涵盖移动算法、群聚行为、路径规划、脚本AI、有限状态机、模糊逻辑、规则式AI、概率论与贝叶斯技术、神经网络及遗传算法等内容。 ... [详细]
  • 深入解析Android自定义View面试题
    本文探讨了Android Launcher开发中自定义View的重要性,并通过一道经典的面试题,帮助开发者更好地理解自定义View的实现细节。文章不仅涵盖了基础知识,还提供了实际操作建议。 ... [详细]
  • 本文介绍如何利用动态规划算法解决经典的0-1背包问题。通过具体实例和代码实现,详细解释了在给定容量的背包中选择若干物品以最大化总价值的过程。 ... [详细]
  • 本文详细探讨了Java中的24种设计模式及其应用,并介绍了七大面向对象设计原则。通过创建型、结构型和行为型模式的分类,帮助开发者更好地理解和应用这些模式,提升代码质量和可维护性。 ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
  • 数据管理权威指南:《DAMA-DMBOK2 数据管理知识体系》
    本书提供了全面的数据管理职能、术语和最佳实践方法的标准行业解释,构建了数据管理的总体框架,为数据管理的发展奠定了坚实的理论基础。适合各类数据管理专业人士和相关领域的从业人员。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 在金融和会计领域,准确无误地填写票据和结算凭证至关重要。这些文件不仅是支付结算和现金收付的重要依据,还直接关系到交易的安全性和准确性。本文介绍了一种使用C语言实现小写金额转换为大写金额的方法,确保数据的标准化和规范化。 ... [详细]
  • 基于2-channelnetwork的图片相似度判别一、相关理论本篇博文主要讲解2015年CVPR的一篇关于图像相似度计算的文章:《LearningtoCompar ... [详细]
  • 在Ubuntu 16.04中使用Anaconda安装TensorFlow
    本文详细介绍了如何在Ubuntu 16.04系统上通过Anaconda环境管理工具安装TensorFlow。首先,需要下载并安装Anaconda,然后配置环境变量以确保系统能够识别Anaconda命令。接着,创建一个特定的Python环境用于安装TensorFlow,并通过指定的镜像源加速安装过程。最后,通过一个简单的线性回归示例验证TensorFlow的安装是否成功。 ... [详细]
author-avatar
rukal2502900501_324
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有