热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

LuoguP1631,2085序列合并,最小函数值

LuoguP1631序列合并首先看下题目,要求的是两个长度都是$N$的序列$A$和$B$,在$A$和$B$中各取一个数相加可以得到$N^2$个和,这$N^2$个和中最小的$N$个。

Luogu P1631 序列合并

首先看下题目, 要求的是两个长度都是\(N\)的序列\(A\)\(B\),在\(A\)\(B\)中各取一个数相加可以得到\(N^2\)个和,这\(N^2\)个和中最小的\(N\)个。

看到由小到大输出,想出这有由优先队列和枚举解决的可能性,开始尝试

最简单的方式就是把每一个和都暴力塞进去,但是会妥妥的超时

接下来两种优化方法

第一种:选择性地塞进去

很容易想到将这两个数列变成

\(B_1+A_1,B_1+A_2,B_1+A_3,B_1+A_4 ... B_1+A_{n-1},B_1+A_n\)

\(B_2+A_1,B_2+A_2,B_2+A_3,B_2+A_4 ... B_2+A_{n-1},B_2+A_n\)

......

\(B_n+A_1,B_n+A_2,B_n+A_3,B_n+A_4 ... B_n+A_{n-1},B_n+A_n\)

这样n个序列,因为题目说了\(A_i\leq A_{i+1}\) \(B_i\leq B_{i+1}\),保证了序列的单调性

不妨将每个序列的第一个数先放入一个堆

只要将这样n个序列中的第i个数在第i+1个数输出之后塞进这个堆

复杂度是\(O(n\ log\ n)\)级别的,可过

\(code:\)

#include
using namespace std;
inline int redn() {                // 快读
    int ret = 0;
    char ch = getchar();
    while(ch<&#39;0&#39;||ch>&#39;9&#39;) ch=getchar();
    while(ch>=&#39;0&#39;&&ch<=&#39;9&#39;) {ret = ret*10+ch-&#39;0&#39;;ch=getchar();}
    return ret;
}
int n,cnt(0);
int a[(int)1E5+7],b[(int)1E5+7];
priority_queue,vector >,greater > > q; // 懒人STL
int main() {
    n = redn();
    for(int i=1;i<=n;++i) a[i] = redn();
    for(int i=1;i<=n;++i) b[i] = redn(),q.push(make_pair(a[1]+b[i],1));
    while(++cnt<=n) {
        printf("%d ",q.top().first);
        int cur = q.top().second;
        int pls = q.top().first;
        q.pop();
        if(cur+1<=n) q.push(make_pair(pls-a[cur]+a[cur+1],cur+1));
    }
    return 0;
}

第二种:减小枚举个数

挺暴力的

上面已经将序列变成了

\(B_1+A_1,B_1+A_2,B_1+A_3,B_1+A_4 ... B_1+A_{n-1},B_1+A_n\)

\(B_2+A_1,B_2+A_2,B_2+A_3,B_2+A_4 ... B_2+A_{n-1},B_2+A_n\)

......

\(B_n+A_1,B_n+A_2,B_n+A_3,B_n+A_4 ... B_n+A_{n-1},B_n+A_n\)

那么我们来思考一下

对于每一个\(B_i\),若\(B_{i-1}\)已经将前其和\(k\)\(A_i\)的和算过了,那么必定满足\(B_i+A_k\geq B_{i-1}+A_k\)

所以我们只需将以{B_i}开始的序列的前\(n-i+1\)个数塞进堆即可

时间复杂度大概是\(O(n\ log^2\ n)\)级别的,勉勉强强也过了

\(code\)就不给了

Luogu P2085 最小函数值

题意简述:

对于\(n\)个函数\(f_i(x) = a_i\times x^2+b_i\times x+c_i\)的每个正整数\(x\)所求得的函数值,输出最小的\(m\)

跟上题差不多,只需把函数值构成的序列变成

\(f_1(1),f_1(1),f_1(1),f_1(1),...,f_1(inf)\)

\(f_2(1),f_2(1),f_2(1),f_2(1),...,f_2(inf)\)

\(f_3(1),f_3(1),f_3(1),f_3(1),...,f_3(inf)\)

...
\(f_n(1),f_n(1),f_n(1),f_n(1),...,f_n(inf)\)

进行如上题操作即可

\(code:\)

#include
using namespace std;
inline int redn() {                                //快读
    int ret = 0;
    char ch = getchar();
    while(ch<&#39;0&#39;||ch>&#39;9&#39;) ch = getchar();
    while(ch>=&#39;0&#39;&&ch<=&#39;9&#39;) {ret = ret*10+ch-&#39;0&#39;;ch = getchar();}
    return ret;
}
int Equ[23333][3];
inline int Gtv(int x,int n) {                      //取值
    return Equ[n][0]*x*x+Equ[n][1]*x+Equ[n][2];
}
int n,m;
int t[23333];
priority_queue,vector >,greater > > q;
int main() {
    n=redn(),m=redn();
    for(int i=1;i<=n;++i) {
        Equ[i][0]=redn(),Equ[i][1]=redn(),Equ[i][2]=redn();
        q.push(make_pair(Gtv(++t[i],i),i));
    }
//  while(!q.empty()) printf("%d ",q.top()),q.pop();
//  return 0;
    int s = 0,mi = (int)1e9+7;
    while(s

Luogu P1631,2085 序列合并,最小函数值


推荐阅读
  • 深入理解Cookie与Session会话管理
    本文详细介绍了如何通过HTTP响应和请求处理浏览器的Cookie信息,以及如何创建、设置和管理Cookie。同时探讨了会话跟踪技术中的Session机制,解释其原理及应用场景。 ... [详细]
  • 本文探讨了如何通过最小生成树(MST)来计算严格次小生成树。在处理过程中,需特别注意所有边权重相等的情况,以避免错误。我们首先构建最小生成树,然后枚举每条非树边,检查其是否能形成更优的次小生成树。 ... [详细]
  • QUIC协议:快速UDP互联网连接
    QUIC(Quick UDP Internet Connections)是谷歌开发的一种旨在提高网络性能和安全性的传输层协议。它基于UDP,并结合了TLS级别的安全性,提供了更高效、更可靠的互联网通信方式。 ... [详细]
  • 深入理解 Oracle 存储函数:计算员工年收入
    本文介绍如何使用 Oracle 存储函数查询特定员工的年收入。我们将详细解释存储函数的创建过程,并提供完整的代码示例。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • 本文介绍了一款用于自动化部署 Linux 服务的 Bash 脚本。该脚本不仅涵盖了基本的文件复制和目录创建,还处理了系统服务的配置和启动,确保在多种 Linux 发行版上都能顺利运行。 ... [详细]
  • 本文介绍如何通过Windows批处理脚本定期检查并重启Java应用程序,确保其持续稳定运行。脚本每30分钟检查一次,并在需要时重启Java程序。同时,它会将任务结果发送到Redis。 ... [详细]
  • 本文介绍如何在应用程序中使用文本输入框创建密码输入框,并通过设置掩码来隐藏用户输入的内容。我们将详细解释代码实现,并提供专业的补充说明。 ... [详细]
  • Vue 2 中解决页面刷新和按钮跳转导致导航栏样式失效的问题
    本文介绍了如何通过配置路由的 meta 字段,确保 Vue 2 项目中的导航栏在页面刷新或内部按钮跳转时,始终保持正确的 active 样式。具体实现方法包括设置路由的 meta 属性,并在 HTML 模板中动态绑定类名。 ... [详细]
  • 本文介绍了如何使用jQuery根据元素的类型(如复选框)和标签名(如段落)来获取DOM对象。这有助于更高效地操作网页中的特定元素。 ... [详细]
  • 本文介绍如何在 Xcode 中使用快捷键和菜单命令对多行代码进行缩进,包括右缩进和左缩进的具体操作方法。 ... [详细]
  • 在Linux系统中配置并启动ActiveMQ
    本文详细介绍了如何在Linux环境中安装和配置ActiveMQ,包括端口开放及防火墙设置。通过本文,您可以掌握完整的ActiveMQ部署流程,确保其在网络环境中正常运行。 ... [详细]
  • 如何在WPS Office for Mac中调整Word文档的文字排列方向
    本文将详细介绍如何使用最新版WPS Office for Mac调整Word文档中的文字排列方向。通过这些步骤,用户可以轻松更改文本的水平或垂直排列方式,以满足不同的排版需求。 ... [详细]
  • 理解存储器的层次结构有助于程序员优化程序性能,通过合理安排数据在不同层级的存储位置,提升CPU的数据访问速度。本文详细探讨了静态随机访问存储器(SRAM)和动态随机访问存储器(DRAM)的工作原理及其应用场景,并介绍了存储器模块中的数据存取过程及局部性原理。 ... [详细]
  • 几何画板展示电场线与等势面的交互关系
    几何画板是一款功能强大的物理教学软件,具备丰富的绘图和度量工具。它不仅能够模拟物理实验过程,还能通过定量分析揭示物理现象背后的规律,尤其适用于难以在实际实验中展示的内容。本文将介绍如何使用几何画板演示电场线与等势面之间的关系。 ... [详细]
author-avatar
mobiledu2502922507
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有