一文详解自动驾驶的运行设计域(ODD)| \n 自动驾驶系列
2021年4月30日,SAE发布了第四版J3016《驾驶自动化分级》,这是即2014年1月16日、2016年9月30日、2018年6月15日之后,J3016的又一次迭代更新。
2021年7月,ISO发布了ISO 22737《预定路线的低速自动驾驶(LSAD)性能要求、系统要求和性能测试规范》。
本系列将详细解读自动驾驶ODD、DDT、DDT fallback、OEDR、低速自动驾驶和自动驾驶分级。
全文7000字,预计阅读18分钟
文 | 吴冬升
基本概念
自动驾驶需要在地球上各个国家地区都能正确工作。因此要求综合考虑各种不同类型的道路、道路标记、交通标志等,以及环境问题,如天气状况。确保自动驾驶汽车在其预定的运行环境中表现充分,是整个自动驾驶系统验证的关键部分。运营设计域ODD(Operational Design Domain)一词的原始定义来自SAE J3016中的定义。
SAE J3016 将 ODD 定义为"特定驾驶自动化系统或其功能专门设计的运行条件,包括但不限于环境、地理和时间限制,和/或某些交通或道路特征的存在或缺失。"[1]
简单来说,ODD就是要定义好在哪些工况下是能够自动驾驶的,脱离了这些工况,自动驾驶就不能保证工作。任何一台自动驾驶车辆,都必须有一定限定的工况。而这个工况可以很宽泛,也可以很精准,并决定了自动驾驶车辆能胜任什么样的场景。比如,一台车的自动驾驶系统只能在高速上使用,它可以自动保持车道、自动超车、自动跟车、自动让行、自动通过ETC、自动上下匝道等,但到了城市里就无法完全自动驾驶。同时,要确保自动驾驶测试和验证是完整的,至少需要确保ODD所有方面已经通过确保系统安全运行,或通过确保系统能够识别超出ODD 的范围。
在工信部发布的《GBT 汽车驾驶自动化分级》推荐性国家标准中,ODD是设计时确定的驾驶自动化功能的本车状态和外部环境。运行设计条件ODC(Operational Design Condition)是设计运行时确定的驾驶自动化功能可以正常工作的条件,包括ODD、驾驶员状态以及其他必要条件。[2]
动态驾驶任务DDT(Dynamic Driving Task)是在道路交通中运行车辆所需的所有实时运行和策略功能,不包括行程安排和目的地和航路点选择等战略功能。
动态驾驶任务接管DDT fallback(Dynamic Driving Task fallback)是在相同情况下,用户对实施DDT或达到最低风险条件的响应(1)在发生DDT性能相关系统故障后,或(2)在ODD退出时,或ADS对达到最低风险条件的响应。
目标和事件检测与响应OEDR(Object and Event Detection and Response)是DDT的子任务,包括监控驾驶环境(检测,识别和分类对象和事件,并准备按需要做出响应),并对这些对象和事件执行适当的响应(即根据需要完成DDT和/或DDT接管)。
低速自动驾驶LSAD(Lowspeed Automated Driving)是最大速度为8.89米/秒(32公里/小时)的自动驾驶系统,将被用于最后一英里的运输、商业区的运输、商业或机场、港口、大学校园区以及其他低速环境的应用。[3]
自动驾驶分级或类别(Levels or Categories of Driving Automation)是基于驾驶自动化系统功能,由该功能和(人工)用户(如有)之间DDT和DDT fallback执行中的角色划分决定。驾驶自动化系统功能部件的制造商确定该功能的要求、ODD及运行特性,包括驾驶自动化水平。
ODD案例
(1)ISO 22737中定义的LSAD ODD
每个LSAD系统都应由制造商定义其ODD。一个LSAD ODD的限制系统应至少指定以下属性:
a) 低速:LSAD系统的速度应等于或小于8.89米/秒或32公里/小时;
b) 适用范围:例如,受限通道或专用道路(公共或私人),或行人/自行车道,或限制所有或某些特定类别机动车进入的区域。限制通行的道路可以通过车道标记或速度限制或物理分界来指定;
c) 预定义路线:在LSAD系统运行之前,在LSAD系统内定义的路线。LSAD系统只能在预定路线上运行。预定路线应由相关的利益相关者共同确定(例如,地方当局、服务提供商、制造商等)。调度员应确认与预定路线的任何偏差不会导致危险情况;
d) 应用区域的照明条件;
e) 天气状况;
f) 路况;
g) 存在或不存在VRU;
h) 可行驶区域内可能存在静态障碍物;
i) 网联要求等。
LSAD系统或调度员应根据当前的ODD条件(例如雾天条件、夜间照明条件),在ODD属性预定值的范围内为指定的应用选择操作值(对于LSAD系统驾驶的车辆)。例如,调度员或LSAD系统可以决定将雨天的最大允许速度限制为低于晴天的速度。
(2)B款车型的L3级ODD [4]
a) 地理限制:地理ODD包括地理围栏的边界和这些边界内区域所有适用的交通规则。只能在有限的高速公路上激活和运行,与来往车辆有连续的结构隔离,没有交叉路口和环岛。这种道路类型的特点是行人和自行车出现的概率很小。对这些激活条件的遵守将由车载传感器检测,例如摄像头监测交通标志,并且还将通过高清地图提供的信息进行保证。考虑到法律要求等各种因素,L3级ADS被设计为在0至85mph(136.79 km/h)的速度下运行;
b) 环境限制:自动驾驶车辆持续监测环境ODD,以确保在所有条件下安全运行。例如,车辆的速度将根据一天中的时间、光线条件、路面摩擦系数太小(例如路面上有雪或冰)或风太强而调整;
c) 人类驾驶员的限制:驾驶员必须系好安全带坐好,并保持清醒等。
(3)A款车型的L3级ODD
a) 行驶在高速公路上,或者带有中央隔离带和护栏的两车道以上机动车专用公路上;
b) 所在车道和周边车道的车间距离在较近也就是说在堵车状态下;
c) 车的行驶速度不超过60km/h;
d) 在传感器可检测到的范围内没有信号灯,也没有行人和骑自行车的人等。
NHTSA ODD分类框架
NHTSA在《A Framework for Automated Driving System Testable Cases and Scenarios》中采用六大要素构建设计运行域,包括基础设施、驾驶操作限制、周边物体、互联、环境条件、区域。[5]
(1)基础设施
道路类型:分隔公路、不分隔公路、主干道、城市、农村、停车场、多车道、单车道、高载客量车辆(HOV)车道、入口/出口匝道、紧急疏散路线、单向、转弯专用车道、私家路、双向车道、交叉口(信号灯、掉头、四向/双向停车、环岛、合并车道、转弯专用车道、人行横道、收费广场、铁路穿越)(FHWA,2012年)。
道路表面:沥青、混凝土、混合料、格栅、砖、泥土、砾石、刮过的道路、部分堵塞、减速带、坑洼、草地(Gibbons,1999)。
道路边缘:标记线、临时标记线、路肩(铺砌或砾石)、路肩(草)、混凝土护栏、格栅、栏杆、路缘、锥体(Sage,2016)。
道路几何:直线、弯道、山丘、侧峰、拐角(常规、死角)、负障碍物、车道宽度(Huang,2010)。
(2)驾驶操作限制
速度限制:最低和最高限速(绝对、相对于限速、相对于周围交通)(Elpern Waxman,2016)。
交通条件:最小交通量、正常交通量、保险杠到保险杠/高峰时间交通量、交通条件变化(事故、应急车辆、施工、封闭道路、特殊事件)(加利福尼亚大学道路计划,2016年)。
(3)周边物体
标志标牌:标志(例如,停车、让行、行人、铁路、学校区域等)、交通信号(闪光、学校区域、消防部门区域等)、人行横道、铁路交叉口、停止的公共汽车、施工标志、急救信号、遇险信号、道路用户信号、手势信号(FHWA,2012)。
道路使用者:车辆类型(轿车、轻型卡车、大型卡车、公共汽车、摩托车、宽载、应急车辆、施工设备、马车/四轮马车)、停车车辆、移动车辆(手动、自动)、行人、自行车手(CA DMV,2016)。
非道路使用者障碍物/物体:动物(如狗、鹿等)、购物车、碎片(如轮胎碎片、垃圾、梯子)、施工设备、行人、自行车手。
(4)互联
车辆:V2V通信(如C-V2X/DSRC、Wi-Fi)、应急车辆。
交通密集信息:众包数据(如Waze)和V2I。
远程车队管理系统:车辆由可执行远程操作的操作中心支持(Aljaafreh等人,2011年)。
设施传感器等:工作区警报、易受伤害的道路使用者、路线和事件管理、GPS、三维高清地图(Ellicipuram,2016)、坑洞位置、天气数据、云端数据等。
(5)环境条件
天气:风、雨、雪、雨夹雪、温度。在高速公路上,小雨或小雪可使平均速度降低3%至13%。大雨会使平均速度降低3%到16%。在大雪中,高速公路的平均速度会下降5%到40%。小雨时自由流速度可降低2%至13%,大雨时可降低6%至17%。雪会导致自由流速度降低5%至64%。降雨期间,速度变化可降低25%(FHWA,2017c)。
天气导致的路面条件:积水、道路被淹、道路结冰、道路积雪。洪水导致车道浸没,积雪和风吹碎屑导致车道阻塞,可能导致通行能力降低。由于危险条件(如大风中的大型卡车)造成的道路封闭和通行限制也会降低道路通行能力(FHWA,2017)。
颗粒物:雾、烟、烟雾、灰尘/污垢、泥。低能见度可导致速度降低10%至12%。雾和强降水以及风吹雪、灰尘和烟雾会缩短能见度距离。低能见度条件会导致速度差异增大,从而增加碰撞风险。每年在雾中发生的车祸超过38700起,每年有600多人在这些车祸中丧生,16300多人受伤(FHWA,2017b)。
光照:白天(太阳:头顶、后照灯和前照灯)、黎明、黄昏、夜晚、路灯、前照灯(常规和远光)、迎面而来的车辆灯光(头顶照明、后照灯和前照灯)(FHWA,2017a)。
(6)区域
地理围栏&#xff1a;中央商务区、校园和退休社区&#xff08;例如&#xff0c;CityMobil2是固定路线&#xff0c;包括道路上和人行道上的<20 mph路线&#xff09;。
交通管控区域&#xff1a;可能包括临时车道封闭、动态交通标志、可变限速、临时或不存在的车道标志、人工引导交通、装卸区。
学校区域&#xff1a;动态限速、不稳定的行人和车辆行为&#xff08;Marshall&#xff0c;2017&#xff09;。
国家/州&#xff1a;任何法律、监管、执法、侵权或其他考虑因素&#xff08;例如&#xff0c;跟踪距离、许可等&#xff09;&#xff08;Bomey&Zambito&#xff0c;2017&#xff09;。
干扰区域&#xff1a;隧道、停车场、茂密的树叶、高层建筑和大气条件限制的GPS。
英国 PAS1883 标准
2020年8月&#xff0c;英国标准协会BSI发布 PAS1883 标准《Operational Design Domain (ODD) taxonomy for an automated driving system (ADS) – Specification》&#xff0c;采用三大要素构建设计运行域&#xff0c;包括景观&#xff08;区域、可行驶区域、交叉口、特殊结构、固定道路结构、临时道路结构&#xff09;&#xff0c;环境条件&#xff08;天气、微粒、照明、互联&#xff09;&#xff0c;动态元素&#xff08;交通、目标车辆&#xff09;。[6]
&#xff08;1&#xff09;景观
区域&#xff1a;a&#xff09;地理围栏区&#xff1b;b&#xff09;交通管理区&#xff1b;c&#xff09;学校区域&#xff1b;d&#xff09;国家或区域&#xff1b;e&#xff09;干扰区&#xff0c;例如茂密的树叶或高层建筑导致的定位信号丢失。
可行驶区域&#xff1a;a&#xff09;可行驶区域类型&#xff1b;b&#xff09;可驾驶区域几何结构&#xff1b;c&#xff09;可行驶区域车道规格&#xff1b;d&#xff09;可行驶区域标志&#xff1b;e&#xff09;可驾驶区域边缘&#xff1b;f&#xff09;可驾驶区域表面。
可行驶区域类型&#xff1a;高速公路、放射状道路&#xff08;A道路是高密度交通道路&#xff0c;将高速公路连接到分配道路或城市中心&#xff09;、分配道路&#xff08;B道路将A道路与次要道路或地方道路连接起来&#xff0c;通常具有低至中等通行能力&#xff09;、次要道路&#xff08;次要道路或地方道路为居民区和其他地方发展提供通道&#xff09;、支路、停车场、共享空间&#xff1b;
可驾驶区域几何结构&#xff1a;水平面&#xff08;直线和曲线&#xff09;&#xff1b;横切面&#xff08;分割、不可分割、行人路、边缘障碍物、不同类型的车道&#xff09;&#xff1b;纵向平面&#xff08;上坡&#xff08;正坡度&#xff09;、下坡&#xff08;负坡度&#xff09;、水平面&#xff09;。
可行驶区域车道规格&#xff1a;车道尺寸、车道标志、车道类型&#xff08;公交车道、交通车道、自行车道、有轨电车车道、应急车道或其他专用车道&#xff09;、车道数、行驶方向。
可行驶区域标志&#xff1a;信息标志、监管标志、警告标志。
可驾驶区域边缘&#xff1a;标记线、路肩&#xff08;铺砌或砾石&#xff09;、路肩&#xff08;草&#xff09;、固体屏障&#xff08;例如格栅、轨道、路缘、锥体&#xff09;、临时标记线、没有。
可驾驶区域表面&#xff1a;可行驶区域表面类型&#xff08;松散&#xff08;如砾石、泥土、沙子&#xff09;、分段式&#xff08;如混凝土板、花岗岩、鹅卵石&#xff09;、均匀&#xff08;如沥青&#xff09;&#xff09;、可驾驶区域表面特征&#xff08;包括交通和天气造成的损坏&#xff0c;分类为裂缝、坑洞、车辙或隆起&#xff09;、可行驶区域引起的路面状况&#xff08;结冰、淹没的道路、海市蜃楼、可行驶区域的积雪、死水、湿路、表面污染&#xff09;。
交叉口&#xff1a;环形交叉口、交叉口&#xff08;T型交叉口、Y形交叉口、十字交叉口、交错交叉口、立体交叉口&#xff09;。
特殊结构&#xff1a;自动访问控制、桥梁、行人过路处、铁路道口、隧道、收费广场。
固定道路结构&#xff1a;建筑物、街灯、街道设施&#xff08;例如护柱&#xff09;、植被。
临时道路结构&#xff1a;施工现场绕道、垃圾收集、道路工程、道路标志。
&#xff08;2&#xff09;环境条件
天气&#xff1a;风、降雨、降雪。
微粒&#xff1a;海洋&#xff08;仅沿海地区&#xff09;、非沉淀水滴或冰晶&#xff08;即&#xff0c;雾/雾&#xff09;、沙尘、烟雾和污染、火山灰。
照明&#xff1a;白天、夜间或低环境照明条件、云、人工照明&#xff08;可能是路灯或迎面而来的车辆灯&#xff09;。
互联&#xff1a;V2X。
&#xff08;3&#xff09;动态元素
交通&#xff1a;实体密度、交通量、流量、实体类型、有特殊车辆&#xff08;如救护车或警察车辆&#xff09;。
主题车辆&#xff1a;主题车辆的速度是额外的ODD属性。
SAE J2980 ODD分类框架
SAE J2980标准中推荐使用六大要素构建运行设计域&#xff0c;包括位置&#xff08;公路、乡村道路、城市道路、交叉口、土路、越野、停车场、车道、维修车库&#xff09;&#xff0c;道路状况&#xff08;道路摩擦&#xff08;干、冰、雪、湿、裂&#xff09;、坡度、道路宽度&#xff09;&#xff0c;驾驶操作&#xff08;启动、停车、向前行驶、向后行驶、直行、转弯、避开车道、变道、关闭&#xff09;&#xff0c;车辆状态&#xff08;滑行、爬行、加速、减速、驻车、停止、碰撞&#xff09;&#xff0c;其他考虑因素&#xff08;侧风&#xff0c;即将来临的交通&#xff0c;施工区域&#xff0c;事故场景&#xff0c;交通堵塞&#xff0c;行人&#xff09;&#xff0c;其他车辆特征&#xff08;其他车辆系统的状态&#xff1a;故障代码、拖车、重载、启动关闭/打开、远程车辆启动、其他技术&#xff09;。[7]
欧洲PEGASUS项目
欧洲PEGASUS 项目提出了一个具有六个独立层的场景系统描述模型[8]&#xff1a;
a) 道路&#xff1a;几何结构、拓扑&#xff0c;路面质量、边界&#xff08;路面&#xff09;&#xff1b;
b) 基础设施&#xff1a;边界&#xff08;结构&#xff09;&#xff0c;标志牌、信号灯等&#xff1b;
c) 第一层和第二层的临时操纵&#xff1a;道路的临时性设施&#xff0c;如临时封路、道路施工现场等&#xff1b;
d) 目标物&#xff1a;静态、动态、移动&#xff0c;交互、机动&#xff1b;
e) 自然环境&#xff1a;天气、光照等其他环境信息&#xff1b;
f) 数字信息&#xff1a;数字信息&#xff0c;如V2X信息、数字地图信息等。
END