热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

一文读懂sklearn决策树参数详解(python代码)

《老饼讲解机器学习》http:ml.bbbdata.comteach#96目录一.sklearn决策树完整入参设置二.参数解释(一)训练参数(二)模型训练(三)模型训练后方

《老饼讲解机器学习》http://ml.bbbdata.com/teach#96

目录

一. sklearn决策树完整入参设置

 二. 参数解释

(一) 训练参数 

 (二) 模型训练

(三) 模型训练后方法与属性 

三.代码 



一. sklearn决策树完整入参设置

clf = tree.DecisionTreeClassifier(criterion="gini",splitter="best",max_depth=None,min_samples_split=2,min_samples_leaf=1,min_weight_fraction_leaf=0.,max_features=None,random_state=None,max_leaf_nodes=None,min_impurity_decrease=0.,min_impurity_split=None,class_weight=None,presort='deprecated',ccp_alpha=0.0) # sk-learn的决策树模型

 二. 参数解释

(一) 训练参数 


常用参数(因场景不同,以下参数最为常用)
class_weight  :设置各类别样本的权重,默认是各个样本权重一样,都为 1.
ccp_alpha    :剪枝时的alpha系数,需要剪枝时设置该参数,默认值是不会剪枝的。
random_state :需要每次训练都一样时,就需要设置该参数。
criterion      :节点质量评估函数(gini,entropy) (看似常用,实际不常用。)

预防过拟合参数(为防过拟合,可以尝试调整以下参数)
min_samples_leaf      :叶子节点最小样本数。
min_samples_split      :节点分枝最小样本个数
max_depth         :树分枝的最大深度
min_weight_fraction_leaf :叶子节点最小权重和
min_impurity_decrease  :节点分枝最小纯度增长量
max_leaf_nodes       :最大叶子节点数

树的多样性参数(训练弱树常用以下参数):
max_features:特征最大查找个数
splitter      :分枝时变量选择方式

明细解析如下: 

参数名称参数输入要求变量说明详细说明
criteriongini(默认),entropy节点质量评估函数gini为基尼系数,entropy为熵
splitterbest(默认),random分枝时变量选择方式random:随机选择,best:选择最好的变量
max_depth整数,None(默认)树分枝的最大深度为None时,树分枝深度无限制
min_samples_split整数或小数,默认2节点分枝最小样本个数节点样本>=min_samples_split时,允许分枝,如果小于该值,则不再分枝(也可以设为小数,此时当作总样本占比,即min_samples_split=ceil(min_samples_split *总样本数)
min_samples_leaf整数或小数,默认1叶子节点最小样本数左右节点都需要满足>=min_samples_leaf,才会将父节点分枝,如果小于该值,则不再分枝(也可以设为小数,此时当作总样本占比,即min_samples_split=ceil(min_samples_split *总样本数))
min_weight_fraction_leaf小数,默认值0叶子节点最小权重和节点作为叶子节点,样本权重总和必须>=min_weight_fraction_leaf,为0时即无限制。
max_features整数,小数,None(默认),
{"auto", "sqrt", "log2"}
特征最大查找个数先对max_features进行如下转换,统一转换成成整数。
整数:max_features=max_features
auto:max_features=sqrt(n_features)
sqrt:max_features=sqrt(n_features)
log2:max_features=log2rt(n_features)
小数:max_features=int(max_features * n_features)
None:max_features=n_features
如果max_features<特征个数&#xff0c;则会随机抽取max_features个特征&#xff0c;只在这max_features中查找特征进行分裂。
random_state整数&#xff0c;随机数实例&#xff0c;None(默认)训练过程中的随机种子。如果设定为非None值&#xff0c;则每次训练都会是一样的结果。
max_leaf_nodes整数&#xff0c;None(默认)最大叶子节点数。如果为None,则无限制。
min_impurity_decrease小数&#xff0c;默认0.节点分枝最小纯度增长量信息增益
min_impurity_split--已弃用
class_weight字典&#xff08;多输出为字典列表&#xff09;
&#xff0c;balanced&#xff0c;None&#xff08;默认&#xff09;
各类别样本的权重None:样本权重全为1
字典:{0:1,1:2}代表0类的样本权重为1&#xff0c;1类的样本权重为2.&#xff08;多输出时&#xff0c;格式为:[{0:1,1:2},{0:1,1:2}]&#xff09;
balanced:把总权重n_samples均分给各类&#xff0c;各类再均分给各个样本。例&#xff1a;有3个类别&#xff0c;10个样本&#xff0c;则每个类别平均权重为10/3,平均到某个类别的权重就为 (10/3)/类别样本数。公式&#xff1a;class_weight &#61; n_samples / (n_classes * np.bincount(y))。
presort--已弃用
ccp_alpha非负小数&#xff0c;默认0剪枝时的alpha系数默认0时即不剪枝

注&#xff1a;回归树DecisionTreeRegressor的入参与分类树基本相同&#xff0c;不同之处&#xff1a;
1.criterion可选值&#xff1a;mse:默认修士&#xff0c;均方差&#xff0c;mae&#xff1a;平均绝对差&#xff0c;friedman_mse&#xff1a;
2.没有class_weight

 (二) 模型训练

clf.fit(X,y) &#xff1a;模型训练 

(三) 模型训练后方法与属性 


-------------预测与评估---------------------
clf.predict(X)                   &#xff1a;预测X的类别
clf.predict_proba(X)        &#xff1a;预测X属于各类的概率
clf.predict_log_proba(X) &#xff1a;相当于 np.log(clf.predict_proba())
clf.apply(X)                     &#xff1a;返回样本预测节点的索引
clf.score(X,y)                  &#xff1a;返回准确率&#xff0c;即模型预测值与y不同的个数占比(支持样本权重&#xff1a;clf.score(X,y,sample_weight&#61;sample_weight))
clf.decision_path(np.array([0 ,1 ,2 ,1 ]).reshape(1, -1)).todense() : 返回决策路径&#xff1a;格式[ 1 1 0 0 0] &#xff0c;它代表通过了第0&#xff0c;第1个节点。

-----------------剪枝-------------------------
clf.cost_complexity_pruning_path(X, y) &#xff1a;返回 CCP(Cost Complexity Pruning代价复杂度剪枝)法的剪枝路径。
备注&#xff1a; CCP的计算方法请参考文章&#xff1a;《决策树后剪枝&#xff1a;CCP剪枝法》

--------------树信息--------------------------
clf.get_depth()           &#xff1a;返回树的深度
clf.get_n_leaves()      &#xff1a;叶子节点个数
clf.tree_.node_count  &#xff1a;总节点个数

--------------树明细数据--------------------------
左节点编号  :  clf.tree_.children_left  
右节点编号  :  clf.tree_.children_right  
分割的变量  :  clf.tree_.feature   
分割的阈值  :  clf.tree_.threshold
不纯度(gini) :  clf.tree_.impurity
样本个数     :  clf.tree_.n_node_samples  
样本分布     :  clf.tree_.value  
备注&#xff1a;详细解说请参考文章&#xff1a;《决策树训练后的模型数据》

--------------其它--------------------------
clf.feature_importances_  &#xff1a;各个特征的权重。
clf.get_params()                &#xff1a;查看模型的入参设置
如果想获取节点上样本的数据&#xff0c;sklearn不直接提供&#xff0c;但可以借用 clf.apply(X) &#xff0c;把原数据作为输入&#xff0c;间接获得。
备注&#xff1a;特征权重的计算方法&#xff1a;《决策特征权重feature_importances计算方法》


三.代码 

from sklearn.datasets import load_iris
from sklearn import tree#----------------数据准备----------------------------
iris &#61; load_iris() # 加载数据
#---------------模型训练----------------------------------
clf &#61; tree.DecisionTreeClassifier(criterion&#61;"gini",splitter&#61;"best",max_depth&#61;None,min_samples_split&#61;2,min_samples_leaf&#61;1,min_weight_fraction_leaf&#61;0.,max_features&#61;None,random_state&#61;None,max_leaf_nodes&#61;None,min_impurity_decrease&#61;0.,min_impurity_split&#61;None,class_weight&#61;None,presort&#61;&#39;deprecated&#39;,ccp_alpha&#61;0.0) # sk-learn的决策树模型
clf &#61; clf.fit(iris.data, iris.target) # 用数据训练树模型构建()
r &#61; tree.export_text(clf, feature_names&#61;iris[&#39;feature_names&#39;]) #训练好的决策树
#---------------模型预测结果------------------------
text_x &#61; iris.data[[0,1,50,51,100,101], :]
pred_target_prob &#61; clf.predict_proba(text_x) # 预测类别概率
pred_target &#61; clf.predict(text_x) # 预测类别#---------------打印结果---------------------------
print("\n&#61;&#61;&#61;模型&#61;&#61;&#61;&#61;&#61;&#61;")
print(r)
print("\n&#61;&#61;&#61;测试数据&#xff1a;&#61;&#61;&#61;&#61;&#61;")
print(text_x)
print("\n&#61;&#61;&#61;预测所属类别概率&#xff1a;&#61;&#61;&#61;&#61;&#61;")
print(pred_target_prob)
print("\n&#61;&#61;&#61;预测所属类别&#xff1a;&#61;&#61;&#61;&#61;&#61;&#61;")
print(pred_target)


推荐阅读
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 利用决策树预测NBA比赛胜负的Python数据挖掘实践
    本文通过使用2013-14赛季NBA赛程与结果数据集以及2013年NBA排名数据,结合《Python数据挖掘入门与实践》一书中的方法,展示如何应用决策树算法进行比赛胜负预测。我们将详细讲解数据预处理、特征工程及模型评估等关键步骤。 ... [详细]
  • Python自动化处理:从Word文档提取内容并生成带水印的PDF
    本文介绍如何利用Python实现从特定网站下载Word文档,去除水印并添加自定义水印,最终将文档转换为PDF格式。该方法适用于批量处理和自动化需求。 ... [详细]
  • 本文介绍如何使用 Python 提取和替换 .docx 文件中的图片。.docx 文件本质上是压缩文件,通过解压可以访问其中的图片资源。此外,我们还将探讨使用第三方库 docx 的方法来简化这一过程。 ... [详细]
  • 本文详细介绍了Java中org.w3c.dom.Text类的splitText()方法,通过多个代码示例展示了其实际应用。该方法用于将文本节点在指定位置拆分为两个节点,并保持在文档树中。 ... [详细]
  • 本文详细介绍了中央电视台电影频道的节目预告,并通过专业工具分析了其加载方式,确保用户能够获取最准确的电视节目信息。 ... [详细]
  • 在 Flutter 开发过程中,开发者经常会遇到 Widget 构造函数中的可选参数 Key。对于初学者来说,理解 Key 的作用和使用场景可能是一个挑战。本文将详细探讨 Key 的概念及其应用场景,并通过实例帮助你更好地掌握这一重要工具。 ... [详细]
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
  • 在本教程中,我们将深入探讨如何使用 Python 构建游戏的主程序模块。通过逐步实现各个关键组件,最终完成一个功能完善的游戏界面。 ... [详细]
  • 本文详细介绍了Java中org.eclipse.ui.forms.widgets.ExpandableComposite类的addExpansionListener()方法,并提供了多个实际代码示例,帮助开发者更好地理解和使用该方法。这些示例来源于多个知名开源项目,具有很高的参考价值。 ... [详细]
  • 本文介绍如何使用阿里云的fastjson库解析包含时间戳、IP地址和参数等信息的JSON格式文本,并进行数据处理和保存。 ... [详细]
  • 本文详细探讨了JDBC(Java数据库连接)的内部机制,重点分析其作为服务提供者接口(SPI)框架的应用。通过类图和代码示例,展示了JDBC如何注册驱动程序、建立数据库连接以及执行SQL查询的过程。 ... [详细]
  • Ihaveastringwithquotesaroundthepathasfollows:我在路径周围有一个带引号的字符串,如下所示:C:\ProgramFiles(x ... [详细]
  • 对象自省自省在计算机编程领域里,是指在运行时判断一个对象的类型和能力。dir能够返回一个列表,列举了一个对象所拥有的属性和方法。my_list[ ... [详细]
  • 本教程详细介绍了如何使用 TensorFlow 2.0 构建和训练多层感知机(MLP)网络,涵盖回归和分类任务。通过具体示例和代码实现,帮助初学者快速掌握 TensorFlow 的核心概念和操作。 ... [详细]
author-avatar
傲慢的寒风呼啸_539
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有