作者 | Alice菌
责编 | 王晓曼
出品 | CSDN博客
数据仓库纬度模型设计
1. 纬度建模基本概念
维度模型是数据仓库领域大师Ralph Kimall所倡导,他的《数据仓库工具箱》,是数据仓库工程领域最流行的数仓建模经典。维度建模以分析决策的需求出发构建模型,构建的数据模型为分析需求服务,因此它重点解决用户如何更快速完成分析需求,同时还有较好的大规模复杂查询的响应性能。
维度建模是专门应用于分析型数据库、数据仓库、数据集市建模的方法。数据集市可以理解为是一种"小型数据仓库"。
1.1事实表
发生在现实世界中的操作型事件,其所产生的可度量数值,存储在事实表中。从最低的粒度级别来看,事实表行对应一个度量事件,反之亦然。
事实表表示对分析主题的度量。比如一次购买行为我们就可以理解为是一个事实。
图中的订单表就是一个事实表,可以理解他就是在现实中发生的一次操作型事件,每完成一个订单,就会在订单中增加一条记录。
事实表的特征:表里没有存放实际的内容,他是一堆主键的集合,这些ID分别能对应到维度表中的一条记录。事实表包含了与各维度表相关联的外键,可与维度表关联。事实表的度量通常是数值类型(条/个/次),且记录数会不断增加,表数据规模迅速增长。
1.2维度表
维度表示要对数据进行分析时所用的一个量,比如你要分析产品销售情况,你可以选择按类别进行分析,或按区域分析。这样的按…分析就构成一个维度。上图中的用户表、商家表、时间表这些都属于维度表。这些表都有一个唯一的主键,然后在表中存放了详细的数据信息。
例如:交易金额分析分析
男性用户的订单金额、联想商品的订单金额、第一季度的订单金额、手机的订单金额、家里下单的订单金额。
例如:学生分析
姓张的同学有多少、男性的同学有多少、江苏的同学有多少、身高小于170cm的同学有多少、年龄小于23岁的同学有多少。
维度表的特征:每个维度表都包含单一的主键列。维度表的主键可以作为与之关联的任何事实表的外键,当然,维度表行的描述环境应与事实表行完全对应。维度表通常比较宽,是扁平型非规范表,包含大量的低粒度的文本属性。
总的说来,在数据仓库中不需要严格遵守规范化设计原则。因为数据仓库的主导功能就是面向分析,以查询为主,不涉及数据更新操作。
需要强调的是:
2. 维度建模三种模式
2.1星形模型
星形模式(Star Schema)是最常用的维度建模方式。星型模式是以事实表为中心,所有的维度表直接连接在事实表上,像星星一样。
星形模式的维度建模由一个事实表和一组维度表成,且具有以下特点:
a. 维表只和事实表关联,维表之间没有关联;
b. 每个维表主键为单列,且该主键放置在事实表中,作为两边连接的外键;
c. 以事实表为核心,维度表围绕核心呈星形分布;
2.2雪花模式
雪花模式(Snowflake Schema)是对星形模式的扩展。雪花模式的维度表可以拥有其他维度表的,虽然这种模型相比星型更规范一些,但是由于这种模型不太容易理解,维护成本比较高,而且性能方面需要关联多层维表,性能也比星型模型要低。所以一般不是很常用。
2.3星座模式
星座模式是星型模式延伸而来,星型模式是基于一张事实表的,而星座模式是基于多张事实表的,而且共享维度信息。
前面介绍的两种维度建模方法都是多维表对应单事实表,但在很多时候维度空间内的事实表不止一个,而一个维表也可能被多个事实表用到。在业务发展后期,绝大部分维度建模都采用的是星座模式。
数据仓库分层架构
1. 为什么要分层
分层的主要原因是在管理数据的时候,能对数据有一个更加清晰的掌控,详细来讲,主要有下面几个原因:
清晰数据结构:
每一个数据分层都有它的作用域,这样我们在使用表的时候能更方便地定位和理解。
方便数据血缘追踪:
简单来说,我们最终给业务呈现的是一个能直接使用业务表,但是它的来源有很多,如果有一张来源表出问题了,我们希望能够快速准确地定位到问题,并清楚它的危害范围。
减少重复开发:
规范数据分层,开发一些通用的中间层数据,能够减少极大的重复计算。
把复杂问题简单化:
将一个复杂的任务分解成多个步骤来完成,每一层只处理单一的步骤,比较简单和容易理解。而且便于维护数据的准确性,当数据出现问题之后,可以不用修复所有的数据,只需要从有问题的步骤开始修复。
屏蔽原始数据的异常:
屏蔽业务的影响,不必改一次业务就需要重新接入数据。
2.数仓分层思想
数据分层,每个企业根据自己的业务需求可以分成不同的层次,但是最基础的分层思想,理论上数据分为三个层,数据运营层、数据仓库层、数据服务层。基于这个基础分层之上添加新的层次,来满足不同的业务需求。
数据运营层(ODS)
Operatedata store(操作数据-存储),是最接近数据源中数据的一层,数据源中的数据,经过抽取、洗净、传输,也就说传说中的ETL之后,装入ODS层。本层的数据,总体上大多是按照源头业务系统的分类方式而分类的。
例如:MySQL里面的一张表可以通过sqoop之间抽取到ODS层。
ODS层数据的来源方式:
经常会使用sqoop来抽取,比如我们每天定时抽取一次。在实时方面,可以考虑用canal监听mysql的binlog,实时接入即可。
线上系统会打入各种日志,这些日志一般以文件的形式保存,我们可以选择用flume定时抽取,也可以用用spark streaming或者Flink来实时接入,当然,kafka也会是一个关键的角色。
来自ActiveMQ、Kafka的数据等。
数据仓库层(DW)
Datawarehouse(数据仓库)。在这里,从ODS层中获得的数据按照主题建立各种数据模型。例如以研究人的旅游消费为主题的数据集中,便可以结合航空公司的登机出行信息,以及银联系统的刷卡记录,进行结合分析,产生数据集。在这里,我们需要了解四个概念:维(dimension)、事实(Fact)、指标(Index)和粒度( Granularity)。
DW数据分层,由下到上为 DWD,DWB,DWS:
DWD:data warehouse detail细节数据层,是业务层与数据仓库的隔离层。
DWB:data warehouse base 基础数据层,存储的是客观数据,一般用作中间层,可以认为是大量指标的数据层。
DWS:data warehouseservice 服务数据层,基于DWB上的基础数据,整合汇总成分析某一个主题域的服务数据,一般是宽表。
数据服务层/应用层(ADS):
ApplicationData Service(应用数据服务)。该层主要是提供数据产品和数据分析使用的数据,一般会存放在ES、MySQL等系统中供线上系统使用。
例如:我们经常说的报表数据,或者说那种大宽表,一般就放在这里。
下面为大家介绍一下阿里巴巴的数据仓库分层架构:
3. 阿里巴巴数据仓库分层架构
(1)ODS 数据准备层
功能:
ODS层是数据仓库准备区,为DWD层提供基础原始数据,可减少对业务系统的影响。
建模方式及原则:
从业务系统增量抽取、保留时间由业务需求决定、可分表进行周期存储、数据不做清洗转换与业务系统数据模型保持一致、按主题逻辑划分。
(2)DWD 数据明细层
功能:
为DW层提供来源明细数据,提供业务系统细节数据的长期沉淀,为未来分析类需求的扩展提供历史数据支撑。
建模方式及原则:
数据模型与ODS层一致,不做清洗转换处理,为支持数据重跑可额外增加数据业务日期字段、可按年月日进行分表、用增量ODS层数据和前一天DWD相关表进行merge处理。
(3)DW(B/S) 数据汇总层
功能:
为DW、ST层提供细粒度数据,细化成DWB和DWS;
建模方式及原则:
聚合、汇总增加派生事实;
关联其它主题的事实表,DW层可能会跨主题域;
DWB保持低粒度汇总加工数据,DWS保持高粒度汇总数据;
数据模型可能采用反范式设计,合并信息等。
(4)DataMarket(数据集市)层
功能:
建模方式及原则:
尽量减少数据访问时计算(优化检索)
维度建模,星型模型
事实拉宽,度量预先计算
分表存储
(5)ST 数据应用层(ADS层)
功能:
ST层面向用户应用和分析需求,包括前端报表、分析图表、KPI、仪表盘、OLAP、专题等分析,面向最终结果用户;
适合作OLAP、报表模型,如ROLAP , MOLAP;
联机事务处理OLTP、联机分析处理OLAP。
OLTP是传统的关系型数据库的主要应用,主要是基本的、日常的事务处理,例如银行交易。OLAP是数据仓库系统的主要应用,支持复杂的分析操作,侧重决策支持,并且提供直观易懂的查询结果。
OLAP联机分析处理的用户是企业中的专业分析人员及管理决策人员,他们在分析业务经营的数据时,从不同的角度来审视业务的衡量指标是一种很自然的思考模式。例如分析销售数据,可能会综合时间周期、产品类别、分销渠道、地理分布、客户群类等多种因素来考量。
根据DW层经过聚合汇总统计后的粗粒度事实表
建模方式及原则:
版权声明:本文为CSDN博主「Alice菌」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:
https://blog.csdn.net/weixin_44318830/article/details/105956712
【END】
6月3日20:00,CSDN 创始人&董事长、极客帮创投创始合伙人蒋涛携手全球顶级开源基金会主席、董事,聚焦中国开源现状,直面开发者在开源技术、商业上的难题,你绝不可错过的开源巅峰对谈!立即免费围观:
更多精彩推荐☞AI 看脸算命,3 万张自拍揭露:颜值即命?
☞5 月编程语言排行榜:C 重回第一,今年编程语言名人堂冠军还会是它吗?| 原力计划
☞芯片供应被掐断,华为能否安全渡劫?
☞来了来了!趋势预测算法大PK
☞附代码 | OpenCV实现银行卡号识别,字符识别算法你知多少?
☞15 岁黑进系统,发挑衅邮件意外获 Offer,不惑之年捐出全部财产,Twitter CEO 太牛了
你点的每个“在看”,我都认真当成了喜欢