热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

意图识别(规则模板解析、深度学习意图识别)

一、意图识别应用领域1、搜索引擎2、对话系统:基于意图识别了解用户想要什么业务或者闲聊,并采用不用的子模型来处理1.1闲聊技术:闲聊机
 一、意图识别应用领域

1、搜索引擎
2、对话系统:基于意图识别了解用户想要什么 业务 或者 闲聊,并采用不用的子模型来处理1.1 闲聊技术:闲聊机器人需要有较高的召回率,因此常常用:seq2seq + attention / transformer / bert .... 1.2 基于业务,例如 电商、买票、查询天气技术:基于上述应用场景需要极高的精确率,因此常常用:① 基于业务规则模板、基于语义匹配 ②
3、智能物联网
4、机器人

二、意图识别的难点

1、用户输入不规范,输入方式多样化,甚至非标准的自然语言
2、表意表现出多意图仙剑奇侠传游戏?--> 游戏软件?……电视剧?--> 电视剧下载?相关新闻?……
3、意图强度,表述不同表现出不同的需求强度天气很好啊-->弱意图(心情,闲聊模式) 今天天气怎么样-->强意图(业务模式)
4、意图存在时效性变化,就是随着时间的推移相同问题的意图会发生变化 ******* 难点
5、没有固定的评估的标准

三、意图识别的主要方法

   1、意图识别的类别

(1)导航型 将用户导航到相应的领域或相应的流程中例:百度 *** 导入到某个网站
(2)信息型 提供给用户想知道的信息例:百度 *** 的个人信息 ----- 类似百度百科
(3)事务型 给用户提供流程中的各个实现环节例:百度 *** 坏了 ----- 类似百度知道

   2、规则模板意图识别


     (1)词表穷举法

                     特点:必须一一命中才行,因此模型的召回率较低,精确率极高 

   (2)规则模板解析    

                规则模板解析: 需要基于  分词、词性标注、命名实体识别、依存句法分析、语义分析 的前提下 才能完成

                                           而且数据中使用的也是字典形式(key hash 结构),查询速度较快。

1、适用于查询非常符合规则的类别,通过规则解析的方式来获取查询的意图。例:北京到上海今天的机票价格,可以转换为:[地点]到[地点][日期][汽车票/机票/火车票]。执行过程:第一步:寻找领域,获取子类模板字典第二步:选取模板,这里面命中模板不是所有的内容都全部命中,只需要命中一部分。第三步:采取 反问模板 与用户沟通缺失了模板的那些内容,并补全这些内容(即上述问句没有日期)第四步:给出 完整的模板信息 并 等待用户确认。1吨等于多少公斤,可以转换为:[数字][计量单位]等于[数字][计量单位]。对规则性较强的query有较好的识别精度,能够较好的提取准确信息。缺点:需要人工参与较多,很难自动化实现。实用指数:4★场景:搜狗通用搜索、小i智能客服、机器人、智能物联网、支付宝分控系统有10000多个模板。

                 特点:规则性较强的query精确率较高,召回率也不错 

  •    案例:搜狗搜索 意图识别

                     规则意图识别的一般技术

                            1. 判断领域:采用实体-主域-模板的整体框架来判别识别领域

                                      注意:主题    ------ 大类别 ;主域  ------- 子类别 ; 模板

                            2. 判断意图:命中主域后,模板采用意图动词(下载、查询等)或意图疑问词(怎么样、为什么等)判别意图

                            3. 区分弱意图和强意图,针对性提供解决方案;判断实体强度

                                搜索引擎意图识别领域判别表:仙剑奇侠传

                 计算过程 

                          第一步:主体(大类)计算

                          第二步:主域(子类)计算 

  •  规则模板解析优化 

4. query改写包括:query纠错,query扩展,query删除,query转换。a. 进行同义词扩展 eg:我去旅游 我要旅游 ------- 技术:① word2vec ② b. 删除一些修饰,扩大召回 ------- 技术:① booststriping信息抽取 ② 语义分析(三元组)c. 通过近义或同义转化,扩大召回 ------- 技术:① word2vec ②

    3、深度学习意图识别

1、机器学习和深度学习方法意图识别可以看做是一个分类问题,针对于垂直产品的特点,定义不同的查询意图类别。对于用户输入的query,根据统计分类模型计算出每一个意图的概率,最终给出查询的意图。 缺点:主要是数据获取和更新较困难,数据的标注也需要较准确才能训练出较好地模型。实用指数:4★场景:京东JIMI、美团垂直搜索2、深度学习 意图识别常见 模型:① LSTM + attention② BERT网络 分类意图识别

                   特点:模型召回率很高 

  •     案例:京东JIMI  意图识别

                      一、 大致结构

                   二、模型网络

京东JIMI意图识别(baseline)深度学习CNN模型,可用于求解一个分类问题,将用户的问题映射到一个具体的分类。最终在算法选型上,采用深度学习CNN模型,其中模型参数:词向量采用100维每个样本限定30个字以内,超出30截断,不足30补充随机向量单层CNN网络,第一层卷积核大小3*50

 

 


推荐阅读
  • 开发笔记:前端之前端初识
    开发笔记:前端之前端初识 ... [详细]
  • 机器学习(ML)三之多层感知机
    深度学习主要关注多层模型,现在以多层感知机(multilayerperceptron,MLP)为例,介绍多层神经网络的概念。隐藏层多层感知机在单层神经网络的基础上引入了一到多个隐藏 ... [详细]
  • 探讨低代码行业发展现状,分析其未能催生大型企业的原因,包括市场需求、技术局限及商业模型等方面。 ... [详细]
  • 自动驾驶中的9种传感器融合算法
    来源丨AI修炼之路在自动驾驶汽车中,传感器融合是融合来自多个传感器数据的过程。该步骤在机器人技术中是强制性的,因为它提供了更高的可靠性、冗余性以及最终的 ... [详细]
  • 本文介绍如何使用OpenCV和线性支持向量机(SVM)模型来开发一个简单的人脸识别系统,特别关注在只有一个用户数据集时的处理方法。 ... [详细]
  • 单片微机原理P3:80C51外部拓展系统
      外部拓展其实是个相对来说很好玩的章节,可以真正开始用单片机写程序了,比较重要的是外部存储器拓展,81C55拓展,矩阵键盘,动态显示,DAC和ADC。0.IO接口电路概念与存 ... [详细]
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • 在2019中国国际智能产业博览会上,百度董事长兼CEO李彦宏强调,人工智能应务实推进其在各行业的应用。随后,在“ABC SUMMIT 2019百度云智峰会”上,百度展示了通过“云+AI”推动AI工业化和产业智能化的最新成果。 ... [详细]
  • 独家解析:深度学习泛化理论的破解之道与应用前景
    本文深入探讨了深度学习泛化理论的关键问题,通过分析现有研究和实践经验,揭示了泛化性能背后的核心机制。文章详细解析了泛化能力的影响因素,并提出了改进模型泛化性能的有效策略。此外,还展望了这些理论在实际应用中的广阔前景,为未来的研究和开发提供了宝贵的参考。 ... [详细]
  • 【图像分类实战】利用DenseNet在PyTorch中实现秃头识别
    本文详细介绍了如何使用DenseNet模型在PyTorch框架下实现秃头识别。首先,文章概述了项目所需的库和全局参数设置。接着,对图像进行预处理并读取数据集。随后,构建并配置DenseNet模型,设置训练和验证流程。最后,通过测试阶段验证模型性能,并提供了完整的代码实现。本文不仅涵盖了技术细节,还提供了实用的操作指南,适合初学者和有经验的研究人员参考。 ... [详细]
  • 能够感知你情绪状态的智能机器人即将问世 | 科技前沿观察
    本周科技前沿报道了多项重要进展,包括美国多所高校在机器人技术和自动驾驶领域的最新研究成果,以及硅谷大型企业在智能硬件和深度学习技术上的突破性进展。特别值得一提的是,一款能够感知用户情绪状态的智能机器人即将问世,为未来的人机交互带来了全新的可能性。 ... [详细]
  • 本文探讨了在一个物理隔离的环境中构建数据交换平台所面临的挑战,包括但不限于数据加密、传输监控及确保文件交换的安全性和可靠性。同时,作者结合自身项目经验,分享了项目规划、实施过程中的关键决策及其背后的思考。 ... [详细]
  • 本文探讨了一种统一的语义数据模型,旨在支持物联网、建筑及企业环境下的数据转换。该模型强调简洁性和可扩展性,以促进不同行业间的插件化和互操作性。对于智能硬件开发者而言,这一模型提供了重要的参考价值。 ... [详细]
  • SDWebImage第三方库学习
    1、基本使用方法异步下载并缓存-(void)sd_setImageWithURL:(nullableNSURL*)urlNS_REFINED_FOR_SWIFT;使用占位图片& ... [详细]
  • 脑机接口技术在物联网行业中的应用与前景分析
    近期,国际研究人员开发了一种轻便的脑电图(EEG)采集与信号处理系统,并在物联网领域进行了初步应用研究。该系统配备了8个可扩展的采集电极和1个参考电极,具备高灵敏度的放大功能,能够有效捕捉和处理脑电信号。通过与物联网技术的结合,该系统有望在智能家居、健康监测和人机交互等领域发挥重要作用,展现出广阔的应用前景。 ... [详细]
author-avatar
育诚家瑋逸群
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有