热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

一份中外结合的MachineLearning自学计划

看了SirajRaval的3个月学习机器学习计划的视频,感觉非常好,地址:https://www.youtube.com/

看了Siraj Raval的3个月学习机器学习计划的视频,感觉非常好,地址:
https://www.youtube.com/watch?v=Cr6VqTRO1v0


结合一些我们学习中的经验得出一份Hybrid的机器学习自学计划。






根据
Siraj的建议:
机器学习的涉及的知识比例分布的

  1. 35%线性代数
  2. 25%概率论和统计学
  3. 15%微积分
  4. 15%算法及其复杂性
  5. 10%是数据预处理知识










强烈建议订阅:Siraj Raval 的youtube 看他的视频非常舒服,一种非常独特的学习方式而且和有用,地址是:
https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A






reddit这个网站大家可能不太熟悉,但是它已经全美流量排名第四,仅次于
Google,YouTube和Facebook,上面内容质量很高,非常专注,下面这个地址是机器学习的subreddit:
https://www.reddit.com/r/MachineLearning/






第一个月:数学






线性代数:



Gillbert Strang教授的教程足够了:
https://www.youtube.com/playlist?list=PL49CF3715CB9EF31D


为什么不推荐中国大学的数学课程呢,其实网易公开课上有跟大学里线性代数课程基本一致需要虽然是中文但是学习起来还是有难度的,没什么互动,如果是为了考试那还好。
Gillbert Strang教授
讲的更多是思考方式以及原理和各种形象的比喻,这种方式更适合我们在职学习,加强理解和思考。


注意:一定做笔记,不能只是听或者看,一定要做笔记,记录要点,疑问,自己的想法等等,这个非常重要,是决定你能否学习好的关键。昨天看到了
一位名叫Tess Ferrandez的小姐姐在推特上分享了一套自己的吴恩达老师的课程笔记,再看看我自己以前的笔记,真是非常害羞,世界上最难受的事情就是比你厉害比你努力的人做的笔记颜值也比你高,地址在这里:
https://www.slideshare.net/TessFerrandez/notes-from-coursera-deep-learning-courses-by-andrew-ng


附上一张图片,大家看看:









微积分:


3Blue1Brown

微积分的本质,老师当时就是看这个视频理解微积分的,老师笨,看了8遍左右吧,个别的视频看了15遍以上,没毛病是真实情况,因为每一段视频并不长,适合反复看,同时也能提高英语能力。


https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9K-rj53DwVRMYO3t5Yr






概率和统计:


edX(麻省理工和哈佛大学联手创建的开放在线课堂平台)有一门很好的课程叫做“科学的不确定性”


https://www.edx.org/course/introduction-probability-science-mitx-6-041x-2










第二个月:机器学习


这里我们按照Siraj的建议来


第一周
学习:python,The Math of Intelligence,Tensorflow


第二周:
Udacity 上的机器学习课程


第三四周:实践机器学习项目


相关地址如下:


python


https://www.youtube.com/watch?v=T5pRlIbr6gg






The Math of Intelligence


https://www.youtube.com/watch?v=xRJCOz3AfYY






Tensorflow


https://www.youtube.com/watch?v=2FmcHiLCwTU






Udacity


https://eu.udacity.com/course/intro-to-machine-learning--ud120






机器学习开源项目


https://github.com/NirantK/awesome-project-ideas














第三个月深度学习


深度学习要用到大量的计算,需要GPU,即使刚入门也需要,买一块NVIDIA Tesla k80的GPU的价格2500美金,好吧。但是非常幸运的是google为我们提供了一块免费的GPU可用:注册google的账号,登陆进去,访问:
https://colab.research.google.com 然后尽情的使用了。


视频教程推荐看Siraj本人的:
https://www.youtube.com/watch?v=vOppzHpvTiQ


另外一个全世界都说好的是
Fast.AI的课程
,
http://course.fast.ai/


最后呢附上一些深度学习的开源代码,也可以自己实现一下,传到自己的github上
https://github.com/llSourcell?tab=repositories






总结


介绍了一份机器学习的自学计划和相关资源,每天保证2个小时的专注学习时间,重点是多思考和找到解决问题的套路,不要把自己的大脑当作是固态硬盘来存数据,要把自己的大脑当作是CPU或者是GPU,是用来计算的。









推荐阅读
  • window下的python安装插件,Go语言社区,Golang程序员人脉社 ... [详细]
  • 本文节选自《NLTK基础教程——用NLTK和Python库构建机器学习应用》一书的第1章第1.2节,作者Nitin Hardeniya。本文将带领读者快速了解Python的基础知识,为后续的机器学习应用打下坚实的基础。 ... [详细]
  • 自然语言处理(NLP)——LDA模型:对电商购物评论进行情感分析
    目录一、2020数学建模美赛C题简介需求评价内容提供数据二、解题思路三、LDA简介四、代码实现1.数据预处理1.1剔除无用信息1.1.1剔除掉不需要的列1.1.2找出无效评论并剔除 ... [详细]
  • python模块之正则
    re模块可以读懂你写的正则表达式根据你写的表达式去执行任务用re去操作正则正则表达式使用一些规则来检测一些字符串是否符合个人要求,从一段字符串中找到符合要求的内容。在 ... [详细]
  • 利用python爬取豆瓣电影Top250的相关信息,包括电影详情链接,图片链接,影片中文名,影片外国名,评分,评价数,概况,导演,主演,年份,地区,类别这12项内容,然后将爬取的信息写入Exce ... [详细]
  • 解决Only fullscreen opaque activities can request orientation错误的方法
    本文介绍了在使用PictureSelectorLight第三方框架时遇到的Only fullscreen opaque activities can request orientation错误,并提供了一种有效的解决方案。 ... [详细]
  • Visual Studio Code (VSCode) 是一款功能强大的源代码编辑器,支持多种编程语言,具备丰富的扩展生态。本文将详细介绍如何在 macOS 上安装、配置并使用 VSCode。 ... [详细]
  • javascript分页类支持页码格式
    前端时间因为项目需要,要对一个产品下所有的附属图片进行分页显示,没考虑ajax一张张请求,所以干脆一次性全部把图片out,然 ... [详细]
  • 深入解析 Android 中 EditText 的 getLayoutParams 方法及其代码应用实例 ... [详细]
  • Python内置模块详解:正则表达式re模块的应用与解析
    正则表达式是一种强大的文本处理工具,通过特定的字符序列来定义搜索模式。本文详细介绍了Python内置的`re`模块,探讨了其在字符串匹配、验证和提取中的应用。例如,可以通过正则表达式验证电子邮件地址、电话号码、QQ号、密码、URL和IP地址等。此外,文章还深入解析了`re`模块的各种函数和方法,提供了丰富的示例代码,帮助读者更好地理解和使用这一工具。 ... [详细]
  • 2020年9月15日,Oracle正式发布了最新的JDK 15版本。本次更新带来了许多新特性,包括隐藏类、EdDSA签名算法、模式匹配、记录类、封闭类和文本块等。 ... [详细]
  • 本文介绍了几种常用的图像相似度对比方法,包括直方图方法、图像模板匹配、PSNR峰值信噪比、SSIM结构相似性和感知哈希算法。每种方法都有其优缺点,适用于不同的应用场景。 ... [详细]
  • 解决Bootstrap DataTable Ajax请求重复问题
    在最近的一个项目中,我们使用了JQuery DataTable进行数据展示,虽然使用起来非常方便,但在测试过程中发现了一个问题:当查询条件改变时,有时查询结果的数据不正确。通过FireBug调试发现,点击搜索按钮时,会发送两次Ajax请求,一次是原条件的请求,一次是新条件的请求。 ... [详细]
  • 在软件开发过程中,经常需要将多个项目或模块进行集成和调试,尤其是当项目依赖于第三方开源库(如Cordova、CocoaPods)时。本文介绍了如何在Xcode中高效地进行多项目联合调试,分享了一些实用的技巧和最佳实践,帮助开发者解决常见的调试难题,提高开发效率。 ... [详细]
  • 在尝试对 QQmlPropertyMap 类进行测试驱动开发时,发现其派生类中无法正常调用槽函数或 Q_INVOKABLE 方法。这可能是由于 QQmlPropertyMap 的内部实现机制导致的,需要进一步研究以找到解决方案。 ... [详细]
author-avatar
躺在地球上的熊
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有