热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

一步步教你理解LSTM

点击上方“小白学视觉”,选择加星标或“置顶”重磅干货,第一时间送达1什么是LSTMLSTM全名是LongShort-TermMemo

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

1 什么是LSTM

LSTM全名是Long Short-Term Memory,长短时记忆网络,可以用来处理时序数据,在自然语言处理和语音识别等领域应用广泛。和原始的循环神经网络RNN相比,LSTM解决了RNN的梯度消失问题,可以处理长序列数据,成为当前最流行的RNN变体。

2 LSTM应用举例

假设我们的模型的输入是依次输入一句话的每个单词,我们需要对单词做分类,比如有两句话:(1)arrive Beijing on November 2nd,这里的Beijing是目的地;(2)leave Beijing on November 2nd,这里的Beijing是出发地。如果用普通的神经网络,输入是'Beijing',那么输出一定就是确定的,但事实上我们希望在'Beijing'前面是'arrive'时,'Beijing'被识别为目的地,在'Beijing'前面时'leave'时,'Beijing'被识别为出发地。这里LSTM就会派上用场,因为LSTM可以记住历史信息,在读到'Beijing'时,LSTM还知道在前面是'arrive'还是'leave',根据历史信息来做出不同的判断,即使输入是相同的,输出也会不同。

3 LSTM结构剖析

普通的神经元是一个输入,一个输出,如图所示: 

f1818eb25ddbd227a778d66a15fc3b96.png

对于神经元h1来讲,输入就是x1,输出就是y1,LSTM做的就是把普通的神经元,替换成LSTM的单元。

dc9434d0cf0e0b17bff421dafcc58526.png

从图中可以看到LSTM有四个输入,分别是input(模型输入),forget gate(遗忘门),input gate(输入门),以及output gate(输出门)。因此相比普通的神经网络,LSTM的参数量是它们的4倍。这3个门信号都是处于0~1之间的实数,1代表完全打开,0代表关闭。遗忘门:决定了前一时刻中memory中的是否会被记住,当遗忘门打开时,前一刻的记忆会被保留,当遗忘门关闭时,前一刻的记忆就会被清空。输入门:决定当前的输入有多少被保留下来,因为在序列输入中,并不是每个时刻的输入的信息都是同等重要的,当输入完全没有用时,输入门关闭,也就是此时刻的输入信息被丢弃了。输出门:决定当前memroy的信息有多少会被立即输出,输出门打开时,会被全部输出,当输出门关闭时,当前memory中的信息不会被输出。

4 LSTM公式推导

有了上面的知识,再来推导LSTM的公式就很简单了,图中ca2e01a80a0220069168f9b012ff4216.png代表遗忘门,cf5bcb9803a46fb739b2800951c1c319.png代表输入门,3091516090d9993be68608a46fdd16f3.png代表输出门。C是memroy cell,存储记忆信息。681ac60ef0697ba97c40ebbbff9872d3.png代表上一时刻的记忆信息,3802974735f2ec4406ecb0f40bb75db7.png代表当前时刻的记忆信息,h是LSTM单元的输出,5a90fed5f45bb9b10a9202b28941df7a.png是前一刻的输出。

aa8ef68509bf218229855545de4e527d.png

遗忘门计算:

6e94fb0d8dac2ef27a7d628dc1b562d6.png

这里的727aae66e366d77860756ba927c657f4.png是把两个向量拼接起来的意思,用sigmoid函数主要原因是得到有个0~1之间的数,作为遗忘门的控制信号。

输入门计算:

15647607d546ac4f18c275f9973eb9a4.png

当前输入:

fafbc0a3e9a0ceebec4784a9dadc1df9.png

当前时刻的记忆信息的更新:

f8c4769f7dc6ce022b722733093d48e2.png

从这个公式可以看出,前一刻的记忆信息c0e545f1634673bbf5ff1c67d3e2b03f.png通过遗忘门fb5edb385435a4e952aec7ac2a8cd29e.png,当前时刻的输入275bd42c53b04c5392c5a268a8ff71e9.png通过输入门568ee0ce17c452c19f87248945ab5b8f.png,加起来更新当前的记忆信息ec1573e36d88c43716e24ce7421872e5.png

输入门计算:

ca065508488476f49d2ad007e283c5b8.png

LSTM的输出,是由输出门和当前记忆信息共同决定的:

c32eddccf306d9076935145e61d299a4.png

这样我们就明白了LSTM的前向计算过程。有了LSTM前向传播算法,推导反向传播算法就很容易了, 通过梯度下降法迭代更新我们所有的参数,关键点在于计算所有参数基于损失函数的偏导数,这里就不细讲了。

小结

LSTM虽然结构复杂,但是只要理顺了里面的各个部分和之间的关系,是不难掌握的。在实际使用中,可以借助算法库如Keras,PyTorch等来搞定,但是仍然需要理解LSTM的模型结构。

参考文献

  1. https://www.youtube.com/watch?v=rTqmWlnwz_0&index=35&list=PLJV_el3uVTsPy9oCRY30oBPNLCo89yu49

  2. https://zybuluo.com/hanbingtao/note/581764

  3. http://www.cnblogs.com/pinard/p/6519110.html

  4. http://blog.echen.me/2017/05/30/exploring-lstms/

下载1:OpenCV-Contrib扩展模块中文版教程

在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。

下载2:Python视觉实战项目52讲

在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。

下载3:OpenCV实战项目20讲

在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。

交流群

欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~

f7ded208f489085adffb78fb893eeb59.png

af85690bb3b354ebb1fb117324e89c97.png



推荐阅读
  • AI 学习路线:从Python开始机器学习
    AI 学习路线:从Python开始机器学习 ... [详细]
  • Web开发框架概览:Java与JavaScript技术及框架综述
    Web开发涉及服务器端和客户端的协同工作。在服务器端,Java是一种优秀的编程语言,适用于构建各种功能模块,如通过Servlet实现特定服务。客户端则主要依赖HTML进行内容展示,同时借助JavaScript增强交互性和动态效果。此外,现代Web开发还广泛使用各种框架和库,如Spring Boot、React和Vue.js,以提高开发效率和应用性能。 ... [详细]
  • 在优化Nginx与PHP的高效配置过程中,许多教程提供的配置方法存在诸多问题或不良实践。本文将深入探讨这些常见错误,并详细介绍如何正确配置Nginx和PHP,以实现更高的性能和稳定性。我们将从Nginx配置文件的基本指令入手,逐步解析每个关键参数的最优设置,帮助读者理解其背后的原理和实际应用效果。 ... [详细]
  • 本文深入解析了WCF Binding模型中的绑定元素,详细介绍了信道、信道管理器、信道监听器和信道工厂的概念与作用。从对象创建的角度来看,信道管理器负责信道的生成。具体而言,客户端的信道通过信道工厂进行实例化,而服务端则通过信道监听器来接收请求。文章还探讨了这些组件之间的交互机制及其在WCF通信中的重要性。 ... [详细]
  • Nginx 反向代理配置与应用指南
    本文详细介绍了 Nginx 反向代理的配置与应用方法。首先,用户可以从官方下载页面(http://nginx.org/en/download.html)获取最新稳定版 Nginx,推荐使用 1.14.2 版本。下载并解压后,通过双击 `nginx.exe` 文件启动 Nginx 服务。文章进一步探讨了反向代理的基本原理及其在实际应用场景中的配置技巧,包括负载均衡、缓存管理和安全设置等,为用户提供了一套全面的实践指南。 ... [详细]
  • 能够感知你情绪状态的智能机器人即将问世 | 科技前沿观察
    本周科技前沿报道了多项重要进展,包括美国多所高校在机器人技术和自动驾驶领域的最新研究成果,以及硅谷大型企业在智能硬件和深度学习技术上的突破性进展。特别值得一提的是,一款能够感知用户情绪状态的智能机器人即将问世,为未来的人机交互带来了全新的可能性。 ... [详细]
  • 超分辨率技术的全球研究进展与应用现状综述
    本文综述了图像超分辨率(Super-Resolution, SR)技术在全球范围内的最新研究进展及其应用现状。超分辨率技术旨在从单幅或多幅低分辨率(Low-Resolution, LR)图像中恢复出高质量的高分辨率(High-Resolution, HR)图像。该技术在遥感、医疗成像、视频处理等多个领域展现出广泛的应用前景。文章详细分析了当前主流的超分辨率算法,包括基于传统方法和深度学习的方法,并探讨了其在实际应用中的优缺点及未来发展方向。 ... [详细]
  • 利用PaddleSharp模块在C#中实现图像文字识别功能测试
    PaddleSharp 是 PaddleInferenceCAPI 的 C# 封装库,适用于 Windows (x64)、NVIDIA GPU 和 Linux (Ubuntu 20.04) 等平台。本文详细介绍了如何使用 PaddleSharp 在 C# 环境中实现图像文字识别功能,并进行了全面的功能测试,验证了其在多种硬件配置下的稳定性和准确性。 ... [详细]
  • 视觉图像的生成机制与英文术语解析
    近期,Google Brain、牛津大学和清华大学等多家研究机构相继发布了关于多层感知机(MLP)在视觉图像分类中的应用成果。这些研究深入探讨了MLP在视觉任务中的工作机制,并解析了相关技术术语,为理解视觉图像生成提供了新的视角和方法。 ... [详细]
  • 2019年斯坦福大学CS224n课程笔记:深度学习在自然语言处理中的应用——Word2Vec与GloVe模型解析
    本文详细解析了2019年斯坦福大学CS224n课程中关于深度学习在自然语言处理(NLP)领域的应用,重点探讨了Word2Vec和GloVe两种词嵌入模型的原理与实现方法。通过具体案例分析,深入阐述了这两种模型在提升NLP任务性能方面的优势与应用场景。 ... [详细]
  • 在Matlab中,我尝试构建了一个神经网络模型,用于预测函数 y = x^2。为此,我设计并实现了一个拟合神经网络,并对其进行了详细的仿真和验证。通过调整网络结构和参数,成功实现了对目标函数的准确估计。此外,还对模型的性能进行了全面评估,确保其在不同输入条件下的稳定性和可靠性。 ... [详细]
  • 随着各类门户网站、短视频平台、剧集播放和在线教育等互联网内容生态的迅猛发展,网络流量呈现爆炸性增长。为提升用户体验,边缘云计算与CDN(内容分发网络)技术应运而生。这些技术通过在靠近用户的位置部署节点,有效降低了数据传输延迟,提高了内容加载速度,确保用户能够通过手机或电脑流畅访问互联网资源。此外,边缘计算还能够在本地处理部分数据,进一步减轻核心网络的压力,优化整体网络性能。 ... [详细]
  • 数据科学笔记26:深入解析随机森林分类算法及其在Python和R中的应用
    ### 摘要随机森林是一种在集成学习领域备受推崇的算法,被誉为“集成学习技术的典范”。该方法因其简洁性、易实现性和较低的计算成本而被广泛应用。本文将深入探讨随机森林的工作原理,特别是其在Python和R中的具体应用。随机森林通过结合多个决策树和Bagging技术,有效提高了模型的准确性和鲁棒性。我们将详细解析其核心机制,并通过实际案例展示如何在不同编程环境中高效实现这一强大的分类算法。 ... [详细]
  • CBAM:卷积块注意模块
    CBAM:ConvolutionalBlockAttentionModule论文地址:https:arxiv.orgabs1807.06521简介:我们提出了 ... [详细]
  • 0x01 Nagios配置文件
    0x01Nagios配置文件,Go语言社区,Golang程序员人脉社 ... [详细]
author-avatar
夜沙
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有