热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

一步步动手实现高并发的Reactor模型——Kafka底层如何充分利用多线程优势去处理网络I/O与业务分发

一,步步,动手,实现,高,并发,的,reactor,模型,kafka,底层,如何,充分,利用,多,线程,优势,去,处理,网络,i
一、从《Apeche Kafka源码剖析》上搬来的概念和图

Kafka网络采用的是Reactor模式,是一种基于事件驱动的模式。熟悉Java编程的读者应该了解Java NIO提供了Reactor模式的API。常见的单线程Java NIO编程模式如图所示。

熟悉NIO编程都应该知道这个Selector,我们可以通过轮询它来获取监听事件,然后通过事件来进行不同的处理,比如OP_ACCEPT连接,OP_READ读取数据等等。

这样简单的处理对于客户端是没什么问题,但对于服务端来说就有些缺点了。在服务端,我们要求读取请求、处理请求以及发送响应各个环节必须能迅速完成,并且要尽可能做到互不影响。所以我们就需要对上述简单的模型进行修改。

为了满足高并发的需求,也为了充分利用服务器的资源,我们对上述的架构稍作调整,将网络读写的逻辑与业务处理的逻辑进行拆分,让其由不同的线程池来处理,如图所示。

二、套餐一:直接撸Kafka源码

如果不想看本文下面这个很挫的Reactor模型,可以直接看Kafka的源码 ~ 如果需要稍微借助一点中文注释,我已经标注了十分多的注释~ 可以直接看这个版本,基于Kafka0.10.0.1的源码解读 ,当然也可以直接去看官方版本。

SocketServer就是它的入口。

其中,内部类 Acceptor 负责建立并配置新连接

内部类 Processor 负责处理IO事件。

KafkaRequestHandler 这个类负责业务的处理。

而业务处理和IO之间的桥则是 RequestChannel。

三、套餐二:动手一步步实现Reactor模型

事先声明,以下这个很挫(但也简单)的Reactor模型只是保证它能用,而且思路和Kafka大致一致,并没有去做很多的异常处理!!很多细节地方也做得不是很到位。

3.1 回忆一下selector是怎么用的

 //1. 获取服务端通道 ServerSocketChannel ssChannel = ServerSocketChannel.open(); ssChannel.bind(new InetSocketAddress(9898)); //2. 设置为非阻塞模式 ssChannel.configureBlocking(false); //3. 打开一个监听器 Selector selector = Selector.open(); //4. 向监听器注册接收事件 ssChannel.register(selector, SelectionKey.OP_ACCEPT); while (selector.select() > 0) { //5. 获取监听器上所有的监听事件值 Iterator it = selector.selectedKeys().iterator(); //6. 如果有值 while (it.hasNext()) { //7. 取到SelectionKey SelectionKey key = it.next(); //8. 根据key值判断对应的事件 if (key.isAcceptable()) { //9. 接入处理 SocketChannel socketChannel = ssChannel.accept(); socketChannel.configureBlocking(false); socketChannel.register(selector, SelectionKey.OP_READ); } else if (key.isReadable()) { //10. 可读事件处理 SocketChannel channel = (SocketChannel) key.channel(); readMsg(channel); } //11. 移除当前key it.remove(); } } 

这就是我们上面提到的第一张图的模型,我们发现它的IO操作和业务处理是杂糅在一起的。当然我们简单的做可以使用一个业务处理的线程池负责处理业务。

但是我们这里是要去实现第二个图的模型~

3.2 实现负责建立连接的Acceptor

  • 在 Acceptor 中监听端口
 public Acceptor(InetSocketAddress inetSocketAddress, Processor[] processors) throws IOException { ServerSocketChannel serverSocketChannel = ServerSocketChannel.open(); serverSocketChannel.configureBlocking(false); serverSocketChannel.socket() .bind(inetSocketAddress); this.serverSocketChannel = serverSocketChannel; this.selector = Selector.open(); this.processors = processors;// 先忽略这个东西 = = } 
  • 注册 OP_ACCEPT 事件,并且不断轮询进行连接的建立,kafka在初始化中大量使用了CountdownLaunch来确保初始化的成功,这里偷懒省去这一步骤。
@Override public void run() { if (init) { System.out.println("已可以开始建立连接"); init = false; } try { serverSocketChannel.register(selector, SelectionKey.OP_ACCEPT); } catch (ClosedChannelException e) { e.printStackTrace(); } int currentProcessors = 0; while (true) { try { int ready = selector.select(500); // 半秒轮询一次 if (ready > 0) { Iterator selectiOnKeys= selector.selectedKeys() .iterator(); while (selectionKeys.hasNext()) { SelectionKey selectiOnKey= selectionKeys.next(); selectionKeys.remove(); if (selectionKey.isAcceptable()) { this.accept(selectionKey, processors[currentProcessors]); currentProcessors = (currentProcessors + 1) % processors.length; } else { throw new RuntimeException("不应该出现的情况,因为只订阅了OP_ACCEPT"); } } } } catch (IOException e) { e.printStackTrace(); } } } // 建立连接,并且使用RoundRobin分配给一个Processor,也就是负责IO的角色 public void accept(SelectionKey selectionKey, Processor processor) throws IOException { SelectableChannel channel = selectionKey.channel(); SocketChannel socketChannel = ((ServerSocketChannel) channel).accept(); socketChannel.configureBlocking(false); socketChannel.socket() .setTcpNoDelay(true); socketChannel.socket() .setKeepAlive(true); // 将需要连接的socketChannel转交给processor去处理 processor.accept(socketChannel); } 

3.3 实现负责处理IO的Processor

  • 新连接进来后的处理:这里只是简单将新建立的连接放在了newConnection中。
 public Processor(String name, RequestChannel requestChannel, ConcurrentHashMap> inFlightResponse) throws IOException { this.name = name; this.newCOnnection= new ConcurrentLinkedQueue<>(); this.selector = Selector.open(); this.inFlightRespOnse= inFlightResponse; this.requestChannel = requestChannel; } protected void accept(SocketChannel socketChannel) { try { System.out.println(name + "正在与" + socketChannel.getLocalAddress() + "建立连接"); } catch (IOException e) { e.printStackTrace(); } newConnection.add(socketChannel); // 还需要wakeUp,如果轮询阻塞了,告诉它可以不阻塞了 selector.wakeup(); } 
  • 处理newConnection,并注册OP_READ,等待客户端传输数据
 @Override public void run() { while (true) { /* * 处理新链接 */ while (!newConnection.isEmpty()) { SocketChannel socketChannel = newConnection.poll(); try { socketChannel.register(selector, SelectionKey.OP_READ); } catch (ClosedChannelException e) { e.printStackTrace(); } } 

新接收到的数据,我们会将其丢进 RequestChannel,并取消关注OP_READ,保证不会让多个请求同时进来。

requestChannel.sendRequest(new Request(selectionKey, byteBuffer));// 接受完数据后,把数据丢进队列

而最新处理完的数据,我们则会将其缓存在 inFlightRequest ,并关注OP_WIRTE。这是仿照 Kafka 的 inFlightRequest 做的,当然做得很粗糙。

Kafka 的 inFlightRequest 是将对应每个节点请求/应答的请求和响应放在了队列中,确保在同一时间段内,一个节点只会有一个请求和应答。这也巧妙的避开了拆包粘包问题,首先 Kafka 保证了不会同时对一个节点发送请求,其次,Kafka 使用了自定的协议(其实就是包头上标明了整个包的长度再加上CRC校验)来保证一次请求的完整性。

我们的Selector轮询中,会将刚才在上一步中关注了OP_WRITE的SelectionKey连同要返回的数据一同拿出,并进行处理,处理完成后,取消关注OP_WRITE,并重新关注OP_READ。

  • 处理新请求与新应答,我们将READ事件和WRITE事件放在了Processor来进行。
 /* * 将新应答放入缓冲队列 */ Response respOnse= requestChannel.receiveResponse(); while (response != null) { SelectionKey key = response.getSelectionKey(); key.interestOps(key.interestOps() | SelectionKey.OP_WRITE); ArrayBlockingQueue inFlight = inFlightResponse.getOrDefault(response.getSelectionKey(), new ArrayBlockingQueue<>(100)); inFlightResponse.put(response.getSelectionKey(), inFlight); try { inFlight.put(response.getByteBuffer()); } catch (InterruptedException e) { e.printStackTrace(); } respOnse= requestChannel.receiveResponse(); } int ready = selector.select(500);// 半秒轮询一次 if (ready > 0) { Iterator selectiOnKeys= selector.selectedKeys() .iterator(); while (selectionKeys.hasNext()) { SelectionKey selectiOnKey= selectionKeys.next(); selectionKeys.remove(); /* * 处理新请求 */ if (selectionKey.isReadable()) { System.out.println(name + "正在处理新请求"); SocketChannel socketChannel = (SocketChannel) selectionKey.channel(); ByteBuffer byteBuffer = ByteBuffer.allocate(1024);// 懒得定协议,就默认取这么多吧 = = socketChannel.read(byteBuffer);// TODO 划重点 byteBuffer.flip(); requestChannel.sendRequest(new Request(selectionKey, byteBuffer));// 接受完数据后,把数据丢进队列 selectionKey.interestOps(selectionKey.interestOps() & ~SelectionKey.OP_READ);// 不再关注read } /* * 处理新应答 */ if (selectionKey.isWritable()) { System.out.println(name + "正在处理新应答"); ByteBuffer send = inFlightResponse.get(selectionKey)// // TODO 划重点 .poll(); SocketChannel socketChannel = (SocketChannel) selectionKey.channel(); socketChannel.write(send); selectionKey.interestOps(selectionKey.interestOps() & ~SelectionKey.OP_WRITE); selectionKey.interestOps(selectionKey.interestOps() | SelectionKey.OP_READ); } } } 
  • RequestChannel的实现实际上十分简单..就是两个队列
 /** * Created by Anur IjuoKaruKas on 2018/12/13 */ public class RequestChannel { private ArrayBlockingQueue requestQueue; private ArrayBlockingQueue responseQueue; public RequestChannel() { requestQueue = new ArrayBlockingQueue<>(100); respOnseQueue= new ArrayBlockingQueue<>(100); } .......... } 

3.4 实现负责处理业务的Handler

很容易想到,Handler 实际上就是负责从 RequestChannel 的 requestQueue 中拉取需要处理的数据,并塞回 RequestChannel 的 responseQueue 中。

我们可以根据接收数据的不同,来进行不同的业务处理。甚至如果需要拓展,这里可以像 netty 一样,仅仅把 Handler 当成Boss,具体业务的执行可以创建相应的线程池去进行处理,比如说 Fetch 业务比较耗时,我可以创建一个较大的线程池,去执行Fetch业务,而 Hello 业务,我们只需要 Executors.newSingleThreadExecutor() 即可。

 @Override public void run() { while (true) { Request request = requestChannel.receiveRequest(); if (request != null) { System.out.println("接收的请求将由" + name + "进行处理"); handler(request.getSelectionKey(), request.getByteBuffer()); } } } public void handler(SelectionKey selectionKey, ByteBuffer byteBuffer) { byte[] bytes = byteBuffer.array(); String msg = new String(bytes); try { Thread.sleep(500); // 模拟业务处理 } catch (InterruptedException e) { e.printStackTrace(); } ByteBuffer response; if (msg.startsWith("Fetch")) { respOnse= ByteBuffer.allocate(2048); response.put("Fetch ~~~~~~~~~~".getBytes()); response.put(bytes); response.flip(); } else if (msg.startsWith("Hello")) { respOnse= ByteBuffer.allocate(2048); response.put("Hi ~~~~~~~~~~".getBytes()); response.put(bytes); response.flip(); } else { respOnse= ByteBuffer.allocate(2048); response.put("Woww ~~~~~~~~~~".getBytes()); response.put(bytes); response.flip(); } System.out.println(name + "处理完毕,正将处理结果返回给Processor"); requestChannel.sendResponse(new Response(selectionKey, response)); } 

3.5 运行我们很挫的模型

我们会发现现在这个很挫的 Reactor 模型的拓展性却很好,大头的两个 Processor 和 Handler 都是可以随意拓展数量的。Kafka 也是这么做的,不过 Kafka 是根据服务器核心的数量来创建 processor 和 handler 的:

// processors的创建 val protocol = endpoint.protocolType // 网络协议 val processorEndIndex = processorBeginIndex + numProcessorThreads for (i <- processorBeginIndex until processorEndIndex) processors(i) = newProcessor(i, connectionQuotas, protocol) // 创建Processor // 在这里面会 // 循环启动processor线程 val acceptor = new Acceptor(endpoint, sendBufferSize, recvBufferSize, brokerId, processors.slice(processorBeginIndex, processorEndIndex), connectionQuotas) // 创建Acceptor // handlers的创建 // 保存KafkaRequestHandler的执行线程 val threads = new Array[Thread](numThreads) // KafkaRequestHandler集合 val runnables = new Array[KafkaRequestHandler](numThreads) for (i <- 0 until numThreads) { runnables(i) = new KafkaRequestHandler(i, brokerId, aggregateIdleMeter, numThreads, requestChannel, apis) threads(i) = Utils.daemonThread("kafka-request-handler-" + i, runnables(i)) threads(i).start() } 

这里进行简单处理,我将所有的东西统统扔进一个线程池。

运行一下我们的整个模型,然后我们使用 Hercules 模拟客户端对我们的服务器进行请求。

/** * Created by Anur IjuoKaruKas on 2018/12/12 */ public class Reactor { public static final int PORT = 9999; public static void main(String[] args) throws IOException { RequestChannel requestChannel = new RequestChannel(); ConcurrentHashMap> inFlightRespOnse= new ConcurrentHashMap<>(); Processor processor1 = new Processor("p1", requestChannel, inFlightResponse); Processor processor2 = new Processor("p2", requestChannel, inFlightResponse); Acceptor acceptor = new Acceptor(new InetSocketAddress(PORT), new Processor[] { processor1, processor2 }); ExecutorService executorService = Executors.newFixedThreadPool(10); executorService.execute(acceptor); executorService.execute(processor1); executorService.execute(processor2); Handler handler1 = new Handler("h1", requestChannel); Handler handler2 = new Handler("h2", requestChannel); executorService.execute(handler1); executorService.execute(handler2); } } 

建立连接后,我们模拟两个客户端,依次发送 ‘hello baby’,‘Fetch msg’ 和 ‘感谢gaojingyu_gw发现问题’。

得到如下响应:

并且服务器日志如下:

我们发现,p1和p2会交替从Acceptor中获取新的连接。h1和h2也交替会从RequestChannel中获取任务来进行执行~

另外额外感谢gaojingyu_gw发现问题,反馈无法建立更多连接。博主来来回回看了很多个地方,终于发现原版的代码确实无法建立更多的连接,Acceptor、Processor中的轮询代码有误,错误代码如下:

 Set selectiOnKeys= selector.selectedKeys(); for (SelectionKey selectionKey : selectionKeys) { if (selectionKey.isAcceptable()) { this.accept(selectionKey, processors[currentProcessors]); currentProcessors = (currentProcessors + 1) % processors.length; } else { throw new RuntimeException("不应该出现的情况,因为只订阅了OP_ACCEPT"); } } 

我们在循环selectionKeys的时候,不能直接循环。我们需要获得其迭代器,并在每次获得迭代器的下一个元素时,将这个元素移除。为什么不能直接循环:

 Keys are added to the selected-key set by selection operations. A key may be removed directly from the selected-key set by invoking the set's remove method or by invoking the remove method of an iterator obtained from the set. Keys are never removed from the selected-key set in any other way; they are not, in particular, removed as a side effect of selection operations. Keys may not be added directly to the selected-key set. 

正确代码如下:

 Iterator selectiOnKeys= selector.selectedKeys().iterator(); while (selectionKeys.hasNext()) { SelectionKey selectiOnKey= selectionKeys.next(); selectionKeys.remove(); if (selectionKey.isAcceptable()) { this.accept(selectionKey, processors[currentProcessors]); currentProcessors = (currentProcessors + 1) % processors.length; } else { throw new RuntimeException("不应该出现的情况,因为只订阅了OP_ACCEPT"); } } 

具体的代码请点击这里,直接拉取下来即可运行,运行的主类是 src/reactor/Reactor

觉得好的话可以顺手为文章点个赞哟~谢谢各位看官老爷!


参考文献:

《Apeche Kafka源码剖析》—— 徐郡明著

Kafka 源码 0.10.0.1


推荐阅读
  • 为什么多数程序员难以成为架构师?
    探讨80%的程序员为何难以晋升为架构师,涉及技术深度、经验积累和综合能力等方面。本文将详细解析Tomcat的配置和服务组件,帮助读者理解其内部机制。 ... [详细]
  • 如何在Java中使用DButils类
    这期内容当中小编将会给大家带来有关如何在Java中使用DButils类,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。D ... [详细]
  • Cookie学习小结
    Cookie学习小结 ... [详细]
  • 解决Bootstrap DataTable Ajax请求重复问题
    在最近的一个项目中,我们使用了JQuery DataTable进行数据展示,虽然使用起来非常方便,但在测试过程中发现了一个问题:当查询条件改变时,有时查询结果的数据不正确。通过FireBug调试发现,点击搜索按钮时,会发送两次Ajax请求,一次是原条件的请求,一次是新条件的请求。 ... [详细]
  • 在什么情况下MySQL的可重复读隔离级别会导致幻读现象? ... [详细]
  • 如何在Linux服务器上配置MySQL和Tomcat的开机自动启动
    在Linux服务器上部署Web项目时,通常需要确保MySQL和Tomcat服务能够随系统启动而自动运行。本文将详细介绍如何在Linux环境中配置MySQL和Tomcat的开机自启动,以确保服务的稳定性和可靠性。通过合理的配置,可以有效避免因服务未启动而导致的项目故障。 ... [详细]
  • 服务器部署中的安全策略实践与优化
    服务器部署中的安全策略实践与优化 ... [详细]
  • 为了确保iOS应用能够安全地访问网站数据,本文介绍了如何在Nginx服务器上轻松配置CertBot以实现SSL证书的自动化管理。通过这一过程,可以确保应用始终使用HTTPS协议,从而提升数据传输的安全性和可靠性。文章详细阐述了配置步骤和常见问题的解决方法,帮助读者快速上手并成功部署SSL证书。 ... [详细]
  • 在Cisco IOS XR系统中,存在提供服务的服务器和使用这些服务的客户端。本文深入探讨了进程与线程状态转换机制,分析了其在系统性能优化中的关键作用,并提出了改进措施,以提高系统的响应速度和资源利用率。通过详细研究状态转换的各个环节,本文为开发人员和系统管理员提供了实用的指导,旨在提升整体系统效率和稳定性。 ... [详细]
  • Python 伦理黑客技术:深入探讨后门攻击(第三部分)
    在《Python 伦理黑客技术:深入探讨后门攻击(第三部分)》中,作者详细分析了后门攻击中的Socket问题。由于TCP协议基于流,难以确定消息批次的结束点,这给后门攻击的实现带来了挑战。为了解决这一问题,文章提出了一系列有效的技术方案,包括使用特定的分隔符和长度前缀,以确保数据包的准确传输和解析。这些方法不仅提高了攻击的隐蔽性和可靠性,还为安全研究人员提供了宝贵的参考。 ... [详细]
  • 线程能否先以安全方式获取对象,再进行非安全发布? ... [详细]
  • 深入理解Kafka服务端请求队列中请求的处理
    本文深入分析了Kafka服务端请求队列中请求的处理过程,详细介绍了请求的封装和放入请求队列的过程,以及处理请求的线程池的创建和容量设置。通过场景分析、图示说明和源码分析,帮助读者更好地理解Kafka服务端的工作原理。 ... [详细]
  • 本文介绍了操作系统的定义和功能,包括操作系统的本质、用户界面以及系统调用的分类。同时还介绍了进程和线程的区别,包括进程和线程的定义和作用。 ... [详细]
  • 【重识云原生】第四章云网络4.8.3.2节——Open vSwitch工作原理详解
    2OpenvSwitch架构2.1OVS整体架构ovs-vswitchd:守护程序,实现交换功能,和Linux内核兼容模块一起,实现基于流的交换flow-basedswitchin ... [详细]
  • 译文:如何使用SocketAsyncEventArgs类(How to use the SocketAsyncEventArgs class)
    转载自:http:blog.csdn.nethulihuiarticledetails3244520原文:HowtousetheSocketAsyncE ... [详细]
author-avatar
yuguiping123
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有