热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

页面置换算法(OPT、FIFO、LRU、CLOCK、改进的时钟置换算法)

一、页面置换算法请求分页存储管理与基本分页存储管理的主要区别:①、在程序执行过程中,当所访问的信息不在内存时,由操作系统负责将所需信息从
一、页面置换算法
  • 请求分页 存储管理与 基本分页 存储管理的主要区别:
    ①、在程序执行过程中,当所访问的信息不在内存时,由操作系统负责将所需信息从外存调入内存【操作系统要提供请求调页功能,将缺失页面从外存调入内存】,然后继续执行程序。
    ②、若内存空间不够,由操作系统负责将内存中暂时用不到的信息换出到外存【操作系统要提供页面置换的功能,将暂时用不到的页面换出外存】
    在这里插入图片描述

(一)最佳置换算法(OPT)


  • 最佳置换算法(OPT,Optimal):每次选择淘汰的页面将是以后永不使用,或者在最长时间内不再被访问的页面,这样可以保证最低的缺页率。
  • 例:假设系统为某进程分配了三个内存块,并考虑到有一下页面号引用串(会依次访问这些页面):7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1
    在这里插入图片描述
  • 最佳置换算法可以保证最低的缺页率,但实际上,只有在进程执行的过程中才能知道接下来会访问到的是哪个页面。操作系统无法提前预判页面访问序列。因此,最佳置换算法是无法实现的。

(二)先进先出置换算法(FIFO)


  • 先进先出置换算法(FIFO):每次选择淘汰的页面最早进入内存的页面
  • 实现方法:把调入内存的页面根据调入的先后顺序排成一个队列,需要换出页面时选择队头页面即可。
  • 队列的最大长度取决于系统为进程分配了多少个内存块。
  • 例:假设系统为某进程分配了三个内存块,并考虑到有以下页面号引用串:3, 2, 1, 0, 3, 2, 4, 3, 2, 1, 0, 4
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  • 例:假设系统为某进程分配了四个内存块,并考虑到有以下页面号引用串:3, 2, 1, 0, 3, 2, 4, 3, 2, 1, 0, 4
    在这里插入图片描述
  • Belady 异常——当为进程分配的物理块数增大时,缺页次数不减反增的异常现象。
  • 只有 FIFO 算法会产生 Belady 异常。另外,FIFO算法虽然实现简单,但是该算法与进程实际运行时的规律不适应,因为先进入的页面也有可能最经常被访问。因此,算法性能差

(三)最近最久未使用置换算法(LRU)


  • 最近最久未使用置换算法(LRU,least recently used):每次淘汰的页面最近最久未使用的页面
  • 实现方法:赋予每个页面对应的页表项中,用访问字段记录该页面自上次被访问以来所经历的时间t。
  • 当需要淘汰一个页面时,选择现有页面中 t 值最大的,即最近最久未使用的页面。
    在这里插入图片描述
  • 例:假设系统为某进程分配了四个内存块,并考虑到有以下页面号引用串:1, 8, 1, 7, 8, 2, 7, 2, 1, 8, 3, 8, 2, 1, 3, 1, 7, 1, 3, 7
    在这里插入图片描述
  • 该算法的实现需要专门的硬件支持,虽然算法性能好,但是实现困难,开销大

(四)时钟置换算法(CLOCK)


  • 最佳置换算法性能最好,但无法实现;先进先出置换算法实现简单,但算法性能差;最近最久未使用置换算法性能好,是最接近OPT算法性能的,但是实现起来需要专门的硬件支持,算法开销大。
  • 时钟置换算法是一种性能和开销较均衡的算法,又称CLOCK算法,或最近未用算法(NRU,NotRecently Used)
  • 简单的CLOCK 算法实现方法:为每个页面设置一个访问位,再将内存中的页面都通过链接指针链接成一个循环队列。
    ①、当某页被访问时,其访问位置为1。当需要淘汰一个页面时,只需检查页的访问位。
    ②、如果是0,就选择该页换出;如果是1,则将它置为0,暂不换出,继续检查下一个页面,若第一轮扫描中所有页面都是1,则将这些页面的访问位依次置为0后,再进行第二轮扫描(第二轮扫描中一定会有访问位为0的页面,因此简单的CLOCK 算法选择一个淘汰页面最多会经过两轮扫描)
    在这里插入图片描述
  • 例:假设系统为某进程分配了五个内存块,并考虑到有以下页面号引用串:1, 3, 4, 2, 5, 6, 3, 4, 7
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

(五)改进型的时钟置换算法


  • 简单的时钟置换算法仅考虑到一个页面最近是否被访问过。事实上,如果被淘汰的页面没有被修改过,就不需要执行I/O操作写回外存。只有被淘汰的页面被修改过时,才需要写回外存。
  • 因此,除了考虑一个页面最近有没有被访问过之外,操作系统还应考虑页面有没有被修改过。在其他条件都相同时,应优先淘汰没有修改过的页面,避免I/O操作。这就是改进型的时钟置换算法的思想。
  • 修改位=0,表示页面没有被修改过;修改位=1,表示页面被修改过。
  • 为方便讨论,用(访问位,修改位)的形式表示各页面状态。如(1,1)表示一个页面近期被访问过,且被修改过。
  • 算法规则:将所有可能被置换的页面排成一个循环队列。
  • ①、第一轮:从当前位置开始扫描到第一个(0, 0)的帧用于替换。本轮扫描不修改任何标志位。
    在这里插入图片描述
  • ②、第二轮:若第一轮扫描失败,则重新扫描,查找第一个(0, 1)的帧用于替换。本轮将所有扫描过的帧访问位设为0。
    在这里插入图片描述
  • ③、第三轮:若第二轮扫描失败,则重新扫描,查找第一个(0, 0)的帧用于替换。本轮扫描不修改任何标志位。
    在这里插入图片描述
  • ④、第四轮:若第三轮扫描失败,则重新扫描,查找第一个(0, 1)的帧用于替换。
    在这里插入图片描述
  • 由于第二轮已将所有帧的访问位设为0,因此经过第三轮、第四轮扫描一定会有一个帧被选中,因此改进型CLOCK置换算法选择一个淘汰页面最多会进行四轮扫描
    在这里插入图片描述
    在这里插入图片描述

推荐阅读
  • 深入理解Java多线程并发处理:基础与实践
    本文探讨了Java中的多线程并发处理机制,从基本概念到实际应用,帮助读者全面理解并掌握多线程编程技巧。通过实例解析和理论阐述,确保初学者也能轻松入门。 ... [详细]
  • 本文深入探讨了MySQL中常见的面试问题,包括事务隔离级别、存储引擎选择、索引结构及优化等关键知识点。通过详细解析,帮助读者在面对BAT等大厂面试时更加从容。 ... [详细]
  • 深入剖析JVM垃圾回收机制
    本文详细探讨了Java虚拟机(JVM)中的垃圾回收机制,包括其意义、对象判定方法、引用类型、常见垃圾收集算法以及各种垃圾收集器的特点和工作原理。通过理解这些内容,开发人员可以更好地优化内存管理和程序性能。 ... [详细]
  • 本文档汇总了Python编程的基础与高级面试题目,涵盖语言特性、数据结构、算法以及Web开发等多个方面,旨在帮助开发者全面掌握Python核心知识。 ... [详细]
  • 深入解析BookKeeper的设计与应用场景
    本文介绍了由Yahoo在2009年开发并于2011年开源的BookKeeper技术。BookKeeper是一种高效且可靠的日志流存储解决方案,广泛应用于需要高性能和强数据持久性的场景。 ... [详细]
  • 优化Flask应用的并发处理:解决Mysql连接过多问题
    本文探讨了在Flask应用中通过优化后端架构来应对高并发请求,特别是针对Mysql 'too many connections' 错误的解决方案。我们将介绍如何利用Redis缓存、Gunicorn多进程和Celery异步任务队列来提升系统的性能和稳定性。 ... [详细]
  • LeetCode: 实现队列与栈的高级应用
    本文介绍如何使用队列和栈实现特定功能,包括动态维护队列元素并计算其平均值,以及栈操作中的优化技巧。 ... [详细]
  • 本题要求在一组数中反复取出两个数相加,并将结果放回数组中,最终求出最小的总加法代价。这是一个经典的哈夫曼编码问题,利用贪心算法可以有效地解决。 ... [详细]
  • 本文详细介绍了Java中实现异步调用的多种方式,包括线程创建、Future接口、CompletableFuture类以及Spring框架的@Async注解。通过代码示例和深入解析,帮助读者理解并掌握这些技术。 ... [详细]
  • 本文深入探讨了UNIX/Linux系统中的进程间通信(IPC)机制,包括消息传递、同步和共享内存等。详细介绍了管道(Pipe)、有名管道(FIFO)、Posix和System V消息队列、互斥锁与条件变量、读写锁、信号量以及共享内存的使用方法和应用场景。 ... [详细]
  • 本文探讨了如何通过一系列技术手段提升Spring Boot项目的并发处理能力,解决生产环境中因慢请求导致的系统性能下降问题。 ... [详细]
  • 使用WinForms 实现 RabbitMQ RPC 示例
    本文通过两个WinForms应用程序演示了如何使用RabbitMQ实现远程过程调用(RPC)。一个应用作为客户端发送请求,另一个应用作为服务端处理请求并返回响应。 ... [详细]
  • 深入解析Hadoop的核心组件与工作原理
    本文详细介绍了Hadoop的三大核心组件:分布式文件系统HDFS、资源管理器YARN和分布式计算框架MapReduce。通过分析这些组件的工作机制,帮助读者更好地理解Hadoop的架构及其在大数据处理中的应用。 ... [详细]
  • 本文详细探讨了Java中Volatile关键字的工作原理、优化技巧及其在实际开发中的应用场景,特别是在提高多线程环境下数据可见性和减少锁竞争方面的优势。 ... [详细]
  • 本文详细介绍了队列与栈这两种基本的数据结构。队列是一种遵循先进先出(FIFO)原则的线性数据结构,允许在队首进行删除或读取操作,在队尾进行插入操作。而栈则是另一种线性数据结构,它遵循后进先出(LIFO)的原则,所有操作均在同一端进行。 ... [详细]
author-avatar
PengJin05
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有