作者:罢脑货_246 | 来源:互联网 | 2024-10-22 19:28
from sklearn.svm import LinearSVC from sklearn.learning_curve import learning_curve #绘制学习曲
from sklearn.svm import LinearSVC from sklearn.learning_curve import learning_curve #绘制学习曲线,以确定模型的状况 def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None, train_sizes=np.linspace(.1, 1.0, 5)): """ 画出data在某模型上的learning curve. 参数解释 ---------- estimator : 你用的分类器。 title : 表格的标题。 X : 输入的feature,numpy类型 y : 输入的target vector ylim : tuple格式的(ymin, ymax), 设定图像中纵坐标的最低点和最高点 cv : 做cross-validation的时候,数据分成的份数,其中一份作为cv集,其余n-1份作为training(默认为3份) """ plt.figure() train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=5, n_jobs=1, train_sizes=train_sizes) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r") plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color="g") plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score") plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score") plt.xlabel("Training examples") plt.ylabel("Score") plt.legend(loc="best") plt.grid("on") if ylim: plt.ylim(ylim) plt.title(title) plt.show() #少样本的情况情况下绘出学习曲线 plot_learning_curve(LinearSVC(C=10.0), "LinearSVC(C=10.0)", X, y, ylim=(0.8, 1.01), train_sizes=np.linspace(.05, 0.2, 5))