热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

闲谈IPv6-IPv6地址聚类分配原则于源地址选择的关系

:mans_shoe::mans_shoe::mans_shoe:昨晚又把光头刮了一把,更光了,用疯

:mans_shoe::mans_shoe::mans_shoe:

昨晚又把光头刮了一把,更光了,用疯子的刮眉刀刮头是给弄流血了,悲哀,以及谢特!

我一向喜欢对比两类相似的东西或者同类的两个版本,然后褒一个贬另一个,我不太喜欢中庸,也不太善于一分为二看问题,近期在做IPv6相关的事情,所以自然要和IPv4做对比,那么,哪怕一个细节上,我都忍不住要吐槽IPv4,但这并不意味着IPv4真的就那么挫,这只是我的特色而已。

还是以一个实际例子入手,先吐槽一顿IPv4,然后再说说IPv6怎么怎么好。

看以下的拓扑,一个有钱的用户从三大运营商同时接入互联网:

闲谈IPv6-IPv6地址聚类分配原则于源地址选择的关系

他要么是为了备份线路,要么是为了负载均衡,要么是为了实现访问联通的服务走联通的线路,访问电信的服务走电信的线路…无所谓,不管怎样,显然,它获得了三个IP地址。

此时它发起一个连接,想访问一个服务器,请问:

该连接的源IP地址如何选择?是ip1,ip2还是ip3?

无疑,这个服务器的IP地址肯定是接入三大运营商之一的,DNS会用发起请求的用户IP来给用户返回相同运营商的IP地址,答案似乎很简单,用相同运营商的呗。

是的,这是正确答案,走同运营商的线路可以避免冷土豆跨运营商转交,服务质量更能得到保证,走同运营商当然要用同运营商地址。

这一切都是在路由选择算法中完成的, 源地址选择和下一跳属于同一网段的地址!

我们只要知道了路由,就能决定选择哪个地址作为源IP地址。至于路由嘛,肯定是事先已经配置好的咯。或者说,随便用一个IP作为源地址,然后请求DNS解析域名,DNS返回的一般都是同运营商的目标地址,然后就用请求DNS解析时的IP作为源就得了。

所以,这件事并不难。

但是,路由和DNS是可信任的吗?路由配置就一定稳定可靠吗?如果说这个用户配置了三条等价的默认路由,怎么办呢?

# 联通默认路由
0.0.0.0/0 via $cnc metric 100
# 电信默认路由
0.0.0.0/0 via $tel metric 100
# 移动默认路由
0.0.0.0/0 via $mob metric 100

很多人都这么玩,最终所有上行流量都从cnc出去(取决于实现,要么是第一个配置的,要么是最后配置的),下行流量分布在三条线路,于是就造成了好多跨运营商传输。

你可能会说,可以配置Policy Routing啊,但是,哥,天下那么多服务器地址,你事先怎么知道哪些地址是联通的,哪些地址是电信的…

只要在你发起一条连接的第一个数据包时没有猜对下一跳,就意味着源地址会选错,源地址如果选择了不同运营商的,那么冷土豆转交将会伴随连接的整个生命周期。 所以说,路由一定要选对!

这又是一个先有鸡还是先有蛋的问题,好在我们能拿到一个条目非常全的地址库,或者DNS也能告诉我们这样一个东西,我们剩余的工作就是发挥愚公移山精卫填海铁杵磨成针的精神,去配置吧!

无论如何,这个事情对外部机制的依赖太多了,就选择一个源IP地址而已,却牵扯到了路由,DNS,Policy Routing…

等等!我最近就碰到配置上万条策略路由的!任何困难都难不倒勤劳的人民。

有没有更简单或者更复杂的方法呢?绝对有!我非常擅长解决这种问题。我用Policy Routing,IP Mark,conntrack就可以配置出这种效果,但是我在本文不说,反正非常复杂繁琐且易出错,说白了就是Trick。这种东西我能说一个礼拜,不然怎么能说自己靠着iptables,iproute2这些打通了内核协议栈任督二脉呢…

IPv6登场,事情起了变化,一切变得不一样!

先来看看IPv6地址的分配原则。

首先,IPv6的分配要遵循一个类似身份证的分层的原则:

闲谈IPv6-IPv6地址聚类分配原则于源地址选择的关系

这就使得所有的提供商在自己所辖的辖区内的路由都是可聚合的!IPv6地址提供商的层级结构和IPv6地址空间本身的层级结构完全一致!

分配机构一般会给一个高级别的运营商一个前缀比较短的整个网段,可以容纳百万级的子网,对于外部而言,这么大个运营商网络,可以从一条通告聚合路由抵达,该大运营商在其次级运营商那里分配地址也是同样的原则。

我这里定义一个 “提供商距离” 的概念。全世界所有的提供商形成一个树形结构,所谓的提供商距离就是两个IPv6地址的直接提供商在这棵树纵向上的距离。

请阅读:

RFC3177: https://tools.ietf.org/html/rfc3177

RFC6177: https://tools.ietf.org/html/rfc6177

对于 “提供商距离” 不用说太多,一个例子足矣。

如果自己有一个IPv6地址,随便给定另一个IPv6地址,我们算一下它们共享前缀的长度,就能知道它们共享到几级提供商。比如给定一个地址 240e:8880:4448:1300::222/64 ,问下面3个地址谁跟它的 提供商距离 最近:

a1=240e:8880:4448:1334::123/64

a2=240e:8870:4448:1334::123/64

a3=240e:8880:4448:1000::123/64

非常简单,直接最长前缀匹配就好了嘛!

看着一个地址,就能算出在IPv6地址空间,它离我的IPv6地址有多亲近。

所以,RFC3484里面的源IP地址选择策略中,有个Rule 8:

Rule 8: Use longest matching prefix.

【为啥是Rule 8而不是优先级更高呢?仔细想想!】

If CommonPrefixLen(SA, D) > CommonPrefixLen(SB, D), then prefer SA.

Similarly, if CommonPrefixLen(SB, D) > CommonPrefixLen(SA, D), then

prefer SB.

IPv6的源地址选择,不再像IPv4一样以下一跳为基准执行最长前缀匹配,而是直接以目标地址为基准执行最长前缀匹配!因此,IPv6的源地址选择不再依赖路由!

我们看看,对于IPv6地址的使用者而言,这个分配原则意味着什么。

这意味着,如果你搬了家,或者你的公司搬了家,你大概率不能继续使用原来的IPv6地址了,甚至你必须更改服务提供商,除非你搬到了同一个被分配了相同64位前缀网段的地理范围内。

如果在IPv4的世界,更换一个家庭或者企业的外部IP地址并不是什么问题,因为NAT遍地都是,没人会为内网每一个主机都分配一个公共地址,也没人有这个财力…但是在IPv6世界,NAT不再被建议使用,甚至强烈建议不使用,那么这就意味着,内网有多少设备,就要改多少设备的IP地址!

天啊,这是一场灾难!在这一点上,IPv4+NAT完胜!

幸运的是,IPv6分层聚合+IPv6自动配置(更多的是指无状态自动配置,缩写为SLAAC)可以完美胜任这一艰巨的任务!顺着一溜下去,你几乎不用动手,事情就完了!

之所以IPv4会有本文一开始陈述的那个问题,就是因为IPv4分配机制的无规则且混乱。

你搬家甚至可以带着你的IPv4地址一起搬,你交点服务费,运营商为你添加一条路由即可。理论上讲,如果每个人都这么玩,核心路由表项将会有数亿条。如果我们假设D类,E类地址也能参与分配,且没有私有地址,那么将会有43亿条的路由表项充斥各大路由器!

我来写一个程序,看看在常规的现代计算机上仅仅遍历43亿次执行递增操作需要多久:

#include 
#include 

int main()
{
	unsigned int i = 0;
	for (i = 0; i <0xffffffff; i++) {
		//i++;
	}
	printf("%0x\n", i);
}

看一下执行时间:

[root@localhost NetworkManager]# time ./a.out
ffffffff

real	0m6.644s
user	0m6.637s
sys	0m0.007s

如果换成数亿次的路由表项匹配,呵呵。

IPv4的问题在于它过于灵活,过于灵活在业务无关的底层并不是什么好事。地址随意飘,加路由即可,地址随便分配,不考虑聚合,以为算法总是可以解决效率问题,这便是问题。

IPv6靠强制措施,硬性规定了很多条条框框,从地址分配时就考虑路由表的聚合问题。

我经常在京东买东西,因为我喜欢京东本地没库存宁可不卖也不让顾客遥遥无期等待。但是另一方面,我是个双重标准的人,我吐槽盒马鲜生,因为就隔一条小路,它就是不给送!绝不通融。

浙江温州皮鞋湿,下雨进水不会胖!


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 我们


推荐阅读
  • 使用Boost.Asio进行异步数据处理的应用程序主要依赖于两个核心概念:I/O服务和I/O对象。I/O服务抽象了操作系统接口,使得异步操作能够高效地执行。I/O对象则代表了具体的网络资源,如套接字和文件描述符,通过这些对象可以实现数据的读写操作。本文详细介绍了这两个概念在Boost.Asio中的应用及其在网络编程中的重要性。 ... [详细]
  • 在CentOS上部署和配置FreeSWITCH
    在CentOS系统上部署和配置FreeSWITCH的过程涉及多个步骤。本文详细介绍了从源代码安装FreeSWITCH的方法,包括必要的依赖项安装、编译和配置过程。此外,还提供了常见的配置选项和故障排除技巧,帮助用户顺利完成部署并确保系统的稳定运行。 ... [详细]
  • 负载均衡基础概念与技术解析
    随着互联网应用的不断扩展,用户流量激增,业务复杂度显著提升,单一服务器已难以应对日益增长的负载需求。负载均衡技术应运而生,通过将请求合理分配到多个服务器,有效提高系统的可用性和响应速度。本文将深入探讨负载均衡的基本概念和技术原理,分析其在现代互联网架构中的重要性及应用场景。 ... [详细]
  • MySQL性能优化与调参指南【数据库管理】
    本文详细探讨了MySQL数据库的性能优化与参数调整技巧,旨在帮助数据库管理员和开发人员提升系统的运行效率。内容涵盖索引优化、查询优化、配置参数调整等方面,结合实际案例进行深入分析,提供实用的操作建议。此外,还介绍了常见的性能监控工具和方法,助力读者全面掌握MySQL性能优化的核心技能。 ... [详细]
  • DHCP三层交换机设置方式全局模式和接口模式设置方式和命令resetsave回车输入yreboot输入n输入y重启后就恢复默认设置了默认用户名密码adminAdmin@huawei ... [详细]
  • 本文探讨了基于端口的ACL访问控制列表与NAT网络地址转换功能的整合优化。基本ACL主要针对源IP地址进行匹配,而高级ACL则能同时匹配源IP、目标IP、源端口及目标端口等多层字段,提供更精细的流量管理。此外,NAT技术的核心优势在于实现宽带共享,通过将内部私有IP地址转换为外部公共IP地址,有效解决了IP地址资源紧张的问题,并增强了网络安全。 ... [详细]
  • 微软发布紧急安全更新,所有Windows 10版本均面临影响!
    微软于周五紧急发布了两项安全更新,旨在解决Windows 10所有版本中Windows Codecs库和Visual Studio Code应用存在的安全隐患。此次更新是继本周初发布的月度例行安全补丁之外的额外措施,凸显了这些问题的紧迫性和重要性。这些漏洞可能被攻击者利用,导致系统权限提升或远程代码执行等严重后果。建议用户尽快安装更新,以确保系统的安全性。 ... [详细]
  • C#中实现高效UDP数据传输技术
    C#中实现高效UDP数据传输技术 ... [详细]
  • Python与R语言在功能和应用场景上各有优势。尽管R语言在统计分析和数据可视化方面具有更强的专业性,但Python作为一种通用编程语言,适用于更广泛的领域,包括Web开发、自动化脚本和机器学习等。对于初学者而言,Python的学习曲线更为平缓,上手更加容易。此外,Python拥有庞大的社区支持和丰富的第三方库,使其在实际应用中更具灵活性和扩展性。 ... [详细]
  • 西北工业大学作为陕西省三所985和211高校之一,虽然在农业和林业领域不如某些顶尖院校,但在航空航天领域的实力尤为突出。该校的计算机科学专业在科研和教学方面也具有显著优势,是考研的理想选择。 ... [详细]
  • 黄聪:MySQL主从复制配置,实现高效读写分离
    大型网站为应对高并发访问,不仅需要在前端实现分布式负载均衡,还需在数据业务和访问层采取有效措施。采用传统的数据结构已无法满足需求,通过配置MySQL主从复制,可实现高效的读写分离,显著提升系统性能和稳定性。 ... [详细]
  • H3C防火墙自动构建安全隧道
    实验拓扑结构:两端采用静态IP地址配置。H3C防火墙能够自动构建IPSec安全隧道,确保数据传输的安全性。通过配置防火墙的非信任区域,实现自动化安全连接的建立与维护,有效提升网络防护能力。 ... [详细]
  • Nginx入门指南:从零开始掌握基础配置与优化技巧
    Nginx入门指南:从零开始掌握基础配置与优化技巧 ... [详细]
  • 前言: 网上搭建k8s的文章很多,但很多都无法按其说明在阿里云ecs服务器成功搭建,所以我就花了些时间基于自己成功搭建k8s的步骤写了个操作手册,希望对想搭建k8s环境的盆友有所帮 ... [详细]
  • 端口转发(Port Forwarding)类似于服务重定向,许多路由器中也称其为虚拟服务器(Virtual Server)。通过合理配置端口转发,可以实现外部网络对内部网络中特定设备和服务的高效访问,从而提高通信效率和灵活性。此外,正确设置端口转发还能增强网络安全,确保只有授权的流量能够进入内网,有效防止未授权访问和潜在威胁。 ... [详细]
author-avatar
黑漆高傲的眼眸
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有