热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

为植物病害对象检测引入改进的PlantDoc数据集

文章目录背景PlantDoc数据集简介将PlantDoc添加到Roboflow公共数据集PlantDoc的用例数据集地址相关网址背景到2050年,世界人口预计将达到

文章目录

  • 背景
  • PlantDoc 数据集简介
  • 将 PlantDoc 添加到 Roboflow 公共数据集
  • PlantDoc 的用例
  • 数据集地址
  • 相关网址


背景

到 2050 年,世界人口预计将达到 97 亿。这是一张大嘴。

技术正在推动下一代产量增长。计算机视觉对于更环保、更高效的生产尤其重要。例如,Blue River (John Deere) 的“See & Spray ”使机器能够实时进行杂草检测,使用的除草剂减少 90%,同时更有效地针对有问题的杂草。

在这里插入图片描述
但农业中的计算机视觉才刚刚开始——更多的开源数据是提高其采用率的关键。我们已经开始看到自动驾驶联合收割机、自动表型分析和自动拖拉机推动精密农业的革命。

PlantDoc 数据集简介

2019 年秋季,印度理工学院的研究人员发布了PlantDoc,这是一个包含 13 个植物物种和 27 个类别(17 个疾病;10 个健康)的 2,598 张图像的数据集,用于图像分类和对象检测。研究人员指出,数据集的创建花费了 300 多个人工小时的收集和注释。与 CropDeep 和 DeepWeeds 等类似数据集不同,该数据集可供公众免费下载,供深度学习研究人员免费使用!

在这里插入图片描述

将 PlantDoc 添加到 Roboflow 公共数据集

在Roboflow,我们致力于推进包括农业在内的所有行业的计算机视觉工作。我们将数据集托管在Roboflow 公共数据集上,以您可能需要的任何注释格式提供:VOC XML、COCO JSON、CreateML JSON,甚至 TFRecords。该数据集遵循与 Pratik Kayal 的 GitHub 版本相同的训练/测试拆分,以便轻松重现您的机器学习实验。

当我们将数据集添加到 Roboflow 并利用自动注释检查时,我们发现了改进的机会,因此数据集在某些方面与原始数据集略有不同。

在这里插入图片描述
首先,纠正了超过28个注释。在某些情况下,边界框略微超出框架,因此被裁剪为与图像边缘一致。还有一些人意外地限制了零像素并完全丢弃。其中 25 个在训练集中,3 个在测试集中。当人类被分配超过 300 小时的标签来创建 8,851 个边界框时,错误就会发生!Roboflow 会自动识别并纠正任何数据集的这些问题。

PlantDoc 的用例

正如 IIT 的研究人员在他们的论文中所说,“仅植物病害每年就给全球经济造成约 2200 亿美元的损失。” 早期识别植物病害的训练模型可显着提高产量潜力。

该数据集还用作基准测试的有用开放数据集。研究人员训练了YOLOv4、MobileNet和Faster-RCNN等对象检测模型和VGG16、InceptionV3 和EfficientNet等图像分类模型。

PlantDoc 数据集上的对象检测模型结果如下表所示。

在这里插入图片描述
PlantDoc 数据集上的分类模型结果如下表所示。
在这里插入图片描述
该数据集可用于推进一般农业计算机视觉任务,无论是健康作物分类、植物病害分类还是植物病害对象检测。

随着计算机视觉准备继续将农业转变为一个部门,我们很高兴看到如何使PlantDoc 数据集更易于访问促进研究兴趣。

数据集地址

https://github.com/pratikkayal/PlantDoc-Object-Detection-Dataset
https://public.roboflow.com/object-detection/plantdoc/1/download/voc

相关网址

https://bluerivertechnology.com/our-products/


推荐阅读
author-avatar
坦普拉尼洛
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有