热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

为什么TF2.0示例不急于执行?

在tensorflow文档中,有一个图像分割示例

在tensorflow文档中,有一个图像分割示例here,它逐步介绍了如何构建和训练Unet。我将本示例用作解决某些自定义损失函数和其他较小更改的问题的中坚力量。

我遇到的问题是模型没有急切执行。如果您将colab示例运行到单元格16,然后运行

model = unet_model(OUTPUT_CHANNELS)

然后做

model.run_eagerly

它将返回False。我以为Tensorflow 2.0中默认情况下渴望执行的功能是什么,那有什么用呢?我如何使这个示例热切地运行?

编辑以添加:

如果我设置model.run_eagerly = True,然后编译模型并再次检查此参数,则将其设置为False。





推荐阅读
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
  • 如何使用PyCharm及常用配置详解
    对于一枚pycharm工具的使用新手,正确了解这门工具的配置及其使用,在使用过程中遇到的很多问题也可以迎刃而解,文中有非常详细的介绍, ... [详细]
  • Python第三方库安装的多种途径及注意事项
    本文详细介绍了Python第三方库的几种常见安装方法,包括使用pip命令、集成开发环境(如Anaconda)以及手动文件安装,并提供了每种方法的具体操作步骤和适用场景。 ... [详细]
  • 解决Anaconda安装TensorFlow时遇到的TensorBoard版本问题
    本文介绍了在使用Anaconda安装TensorFlow时遇到的“Could not find a version that satisfies the requirement tensorboard”错误,并提供详细的解决方案,包括创建虚拟环境和配置PyCharm项目。 ... [详细]
  • 本文介绍如何从字符串中移除大写、小写、特殊、数字和非数字字符,并提供了多种编程语言的实现示例。 ... [详细]
  • Keras 实战:自编码器入门指南
    本文介绍了使用 Keras 框架实现自编码器的基本方法。自编码器是一种用于无监督学习的神经网络模型,主要功能包括数据降维、特征提取等。通过实际案例,我们将展示如何使用全连接层和卷积层来构建自编码器,并讨论不同维度对重建效果的影响。 ... [详细]
  • 本文详细介绍了如何在Windows环境下配置GPU支持,并使用Keras和TensorFlow实现YOLOv3模型进行图像目标检测。对于环境搭建的具体步骤,可参考外部链接提供的指南。 ... [详细]
  • 本文详细介绍了使用NumPy和TensorFlow实现的逻辑回归算法。通过具体代码示例,解释了数据加载、模型训练及分类预测的过程。 ... [详细]
  • 在Ubuntu 16.04中使用Anaconda安装TensorFlow
    本文详细介绍了如何在Ubuntu 16.04系统上通过Anaconda环境管理工具安装TensorFlow。首先,需要下载并安装Anaconda,然后配置环境变量以确保系统能够识别Anaconda命令。接着,创建一个特定的Python环境用于安装TensorFlow,并通过指定的镜像源加速安装过程。最后,通过一个简单的线性回归示例验证TensorFlow的安装是否成功。 ... [详细]
  • 本文详细介绍如何通过Anaconda 3.5.01快速安装TensorFlow,包括环境配置和具体步骤。 ... [详细]
  • 吴恩达推出TensorFlow实践课程,Python基础即可入门,四个月掌握核心技能
    量子位报道,deeplearning.ai最新发布了TensorFlow实践课程,适合希望使用TensorFlow开发AI应用的学习者。该课程涵盖机器学习模型构建、图像识别、自然语言处理及时间序列预测等多个方面。 ... [详细]
  • 本文探讨了图像标签的多种分类场景及其在以图搜图技术中的应用,涵盖了从基础理论到实际项目实施的全面解析。 ... [详细]
  • 本文详细介绍了 TensorFlow 的入门实践,特别是使用 MNIST 数据集进行数字识别的项目。文章首先解析了项目文件结构,并解释了各部分的作用,随后逐步讲解了如何通过 TensorFlow 实现基本的神经网络模型。 ... [详细]
  • 本文介绍了一个使用Keras框架构建的卷积神经网络(CNN)实例,主要利用了Keras提供的MNIST数据集以及相关的层,如Dense、Dropout、Activation等,构建了一个具有两层卷积和两层全连接层的CNN模型。 ... [详细]
  • 本文详细介绍了C++标准模板库(STL)中各容器的功能特性,并深入探讨了不同容器操作函数的异常安全性。 ... [详细]
author-avatar
手机用户2502932551
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有