热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

为什么说BP神经网络就是人工神经网络的一种?

BP(BackPropagation)网络是由Rinehart等于1986年提出的,是一种按误差逆传播算法训练的,多层前馈网络,是目前应用最广泛的神经网络模型之一。�CBP网络能学习和

BP( Back Propagation)网络是由Rinehart等于1986年提出的,是一种按误差逆传播算法训练的,多层前馈网络,是目前


应用最广泛的神经网络模型之一。


CBP网络能学习和存储大量的输入、输出模式映射关系,而无须事前揭示描述这种映射关系的数学方程。


C其学习规则是使用梯度下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。


BP神经网络模型拓扑结构包括:


输入层(Input),这一区域相当于外界的刺激,是刺激的来源并且将刺激传递给神经元。


隐藏层( Hide layer),这一区域表示神经元相互之间传递刺激,相当于人脑里面。


输出层(Output layer),这一区域表示神经元经过多层次相互传递后,对外界的反应。


wKioL1mmUBuynyoXAACa15zTGhE054.jpg-wh_50


BP反馈机制


简单的描述就是,输入层将刺激传递给隐藏层,隐藏层通过神经元之间,联系的权重和激活函数,将刺激传到输出层,输出层整理隐藏层处理后的刺激,产生最终结果。


若有正确的结果,那么将正确的结果和产生的结果进行比较,得到误差,再逆推对神经网中的链接权重进行反馈修正,从而来完成学习的过程。


这就是BP (Back Propagation)神经网的反馈机制,也是名字的来源,即运用向后反馈的学习机制,来修正神经网中的权


重,最终达到输出正确结果的目的。


双向信号传播


BP算法由数据流的前向(正向)传播和误差信号的反向传播两个过程构成。


C正向传播时,传播方向为输入层-隐层-输出层,每层神经元的状态只影响下一层神经元。


C若在输出层得不到期望的输出,则转向误差信号的反向传播流程。


这两个过程的交替进行


C在权向量空间,执行误差函数梯度下降策略,动态迭代搜索一组权向量。


C使网络误差函数达到最小值,从而完成信息提取,和记忆过程。




正向传播


设BP神经网络的输入层有n个节点,隐层有q个节点,输出层有m个节点,输入层与隐层之间有权值为vki,隐层与输出层之间的权值为wjk,三层神经网络的拓扑结构,如下图所示。


wKiom1mmUECTZ2zTAACppbF-3-Y941.jpg-wh_50


隐层传递函数为1(),输出层的传递函数为2(),则隐层节点的输出为(将阈值写入求和项中,k=1,2,…q)


wKiom1mmUEyRgDYRAAAdxl-hOLw021.jpg-wh_50


输出层节点的输出为(j=l,2,…,m):


wKiom1mmUFiiBeEVAAAbPmFzYFg928.jpg-wh_50


至此BP网络完成n维空间向量对m维空间的近似映射




反向传播


反向传播,目的是传递误差信号


C所以要进行定义误差函数、输出层权值变化、以及隐层权值变化等操作。


C以上作用可分别以数据公式表达出来:


wKioL1mmUFKh2-LKAAAfL3AkRqk716.jpg-wh_50


C式中x1,x2,…,xq为输入信号,wj1,wj2,…,wji,…,wjn为神经元k之权值,uk为线性组合结果,θk为阈值,f ()为激活函数,yk为神经元k的输出。


wKiom1mmUHSB62sLAAAXn8xwrgk674.jpg-wh_50


C若把输入的维数增加一维,则可把阈值θk包括进去。


本文出自 “中科院计算所培训” 博客,谢绝转载!


推荐阅读
  • 信用评分卡的Python实现与评估
    本文介绍如何使用Python构建和评估信用评分卡模型,涵盖数据预处理、模型训练及验证指标选择。附带详细代码示例和视频教程链接。 ... [详细]
  • 通过Web界面管理Linux日志的解决方案
    本指南介绍了一种利用rsyslog、MariaDB和LogAnalyzer搭建集中式日志管理平台的方法,使用户可以通过Web界面查看和分析Linux系统的日志记录。此方案不仅适用于服务器环境,还提供了详细的步骤来确保系统的稳定性和安全性。 ... [详细]
  • 本文将深入探讨如何在不依赖第三方库的情况下,使用 React 处理表单输入和验证。我们将介绍一种高效且灵活的方法,涵盖表单提交、输入验证及错误处理等关键功能。 ... [详细]
  • 本题探讨了在一个有向图中,如何根据特定规则将城市划分为若干个区域,使得每个区域内的城市之间能够相互到达,并且划分的区域数量最少。题目提供了时间限制和内存限制,要求在给定的城市和道路信息下,计算出最少需要划分的区域数量。 ... [详细]
  • 本题探讨如何通过最大流算法解决农场排水系统的设计问题。题目要求计算从水源点到汇合点的最大水流速率,使用经典的EK(Edmonds-Karp)和Dinic算法进行求解。 ... [详细]
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 深入解析 Apache Shiro 安全框架架构
    本文详细介绍了 Apache Shiro,一个强大且灵活的开源安全框架。Shiro 专注于简化身份验证、授权、会话管理和加密等复杂的安全操作,使开发者能够更轻松地保护应用程序。其核心目标是提供易于使用和理解的API,同时确保高度的安全性和灵活性。 ... [详细]
  • 本文介绍如何在现有网络中部署基于Linux系统的透明防火墙(网桥模式),以实现灵活的时间段控制、流量限制等功能。通过详细的步骤和配置说明,确保内部网络的安全性和稳定性。 ... [详细]
  • 优化局域网SSH连接延迟问题的解决方案
    本文介绍了解决局域网内SSH连接到服务器时出现长时间等待问题的方法。通过调整配置和优化网络设置,可以显著缩短SSH连接的时间。 ... [详细]
  • 卷积神经网络(CNN)基础理论与架构解析
    本文介绍了卷积神经网络(CNN)的基本概念、常见结构及其各层的功能。重点讨论了LeNet-5、AlexNet、ZFNet、VGGNet和ResNet等经典模型,并详细解释了输入层、卷积层、激活层、池化层和全连接层的工作原理及优化方法。 ... [详细]
  • 本文详细介绍了 Flink 和 YARN 的交互机制。YARN 是 Hadoop 生态系统中的资源管理组件,类似于 Spark on YARN 的配置方式。我们将基于官方文档,深入探讨如何在 YARN 上部署和运行 Flink 任务。 ... [详细]
  • 本文深入探讨了HTTP请求和响应对象的使用,详细介绍了如何通过响应对象向客户端发送数据、处理中文乱码问题以及常见的HTTP状态码。此外,还涵盖了文件下载、请求重定向、请求转发等高级功能。 ... [详细]
  • PHP 过滤器详解
    本文深入探讨了 PHP 中的过滤器机制,包括常见的 $_SERVER 变量、filter_has_var() 函数、filter_id() 函数、filter_input() 函数及其数组形式、filter_list() 函数以及 filter_var() 和其数组形式。同时,详细介绍了各种过滤器的用途和用法。 ... [详细]
  • 本文详细探讨了HTML表单中GET和POST请求的区别,包括它们的工作原理、数据传输方式、安全性及适用场景。同时,通过实例展示了如何在Servlet中处理这两种请求。 ... [详细]
  • 2017年人工智能领域的十大里程碑事件回顾
    随着2018年的临近,我们一同回顾过去一年中人工智能领域的重要进展。这一年,无论是政策层面的支持,还是技术上的突破,都显示了人工智能发展的迅猛势头。以下是精选的2017年人工智能领域最具影响力的事件。 ... [详细]
author-avatar
爱在运动-666_517
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有