热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

深入RTOS实践,面对原子操作提问竟感困惑

在实时操作系统(RTOS)的实践中,尽管已经积累了丰富的经验,但在面对原子操作的具体问题时,仍感到困惑。本文将深入探讨RTOS中的原子操作机制,分析其在多任务环境下的重要性和实现方式,并结合实际案例解析常见的问题及解决方案,帮助读者更好地理解和应用这一关键技术。




已剪辑自: https://mp.weixin.qq.com/s/kvxcOHT-xHtMAjQqJu7Y2g

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-C3f9Rrei-1668695258073)(https://res.wx.qq.com/mmbizappmsg/zh_CN/htmledition/js/images/icon/audio/icon_qqmusic_source6201b5.svg)]img大家好~裸机开发与RTOS开发一个非常重要的区别在于多线程之间的消息传递和数据共享问题,然而在这中间变量的原子操作是一个非常重要的话题,不同的处理器架构和编译选项都可能生成不同的指令,从而影响到变量的原子操作,导致一些异常、数据错乱等问题。那么今天分享今天找了一下这块的内容,跟大家分享一下:这个是在面试的时候遇到的问题,当时没有答出来。回到家以后查了查,整理记录下来。原问题:什么指令集支持原子操作?其原理是什么? 如果考虑到全部的指令集,问题太大了,这里简化下。以X86和ARM为例。原子操作是不可分割的操作,在执行完毕时它不会被任何事件中断。在单处理器系统(UniProcessor,简称 UP)中,能够在单条指令中完成的操作都可以认为是原子操作,因为中断只能发生在指令与指令之间。比如,C语言代码图片如果未经优化,有可能生成如下汇编:图片这样在有多个进程执行这段代码时,就有可能产生并发问题:图片这就会出现问题。在单处理器中,解决这个问题的方法是,将count++语句翻译成单指令操作图片X86指令集支持inc操作,这样count操作可以在一条指内完成。进程的上下文切换总是在一条指令执行之后完成,所以不会出现上述的并发问题。对于单处理器来说,一条处理器指令就是一个原子操作。同样,ARM里的SWP和X86里的XCHG都是对于单处理器来说,是原子操作。但是,在多处理器系统(Symmetric Multi-Processor,简称 SMP)中情况有所不同,由于系统中有多个处理器在独立的运行,即使在能单条指令中完成的操作也可能受到干扰。因为这个时候并发的主题不再是进程,而是处理器。
Intel X86指令集提供了指令前缀lock用于锁定前端串行总线FSB,保证了指令执行时不会收到其他处理器的干扰。比如:图片使用lock指令前缀之后,处理期间对count内存的并发访问(Read/Write)被禁止,从而保证了指令的原子性。如图所示:图片其原理在Intel开发手册有如下说明:

Description

Causes the processor’s LOCK# signal to be asserted during execution of the accompanying instruction (turns the instruction into an atomic instruction). In a multiprocessor environment, the LOCK# signal ensures that the processor has exclusive use of any shared memory while the signal is asserted.

The LOCK prefix can be prepended only to the following instructions and only to those forms of the instructions where the destination operand is a memory operand: ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG, CMPXCH8B, CMPXCHG16B, DEC, INC, NEG, NOT, OR, SBB, SUB, XOR, XADD, and XCHG. If the LOCK prefix is used with one of these instructions and the source operand is a memory operand, an undefined opcode exception (#UD) may be generated. An undefined opcode exception will also be generated if the LOCK prefix is used with any instruction not in the above list. The XCHG instruction always asserts the LOCK# signal regardless of the presence or absence of the LOCK prefix.

The LOCK prefix is typically used with the BTS instruction to perform a read-modify-write operation on a memory location in shared memory environment.

The integrity of the LOCK prefix is not affected by the alignment of the memory field. Memory locking is observed for arbitrarily misaligned fields.

在执行伴随的指令期间使处理器的LOCK#信号有效(将指令变为原子指令)。在多处理器环境中,LOCK#信号确保处理器在信号有效时独占使用任何共享存储器。LOCK前缀只能附加在下面的指令之前,并且只适用于那些目标操作数是内存操作数的指令格式:ADD,ADC,AND,BTC,BTR,BTS,CMPXCHG,CMPXCH8B,CMPXCHG16B,DEC,INC, NEG,NOT,OR,SBB,SUB,XOR,XADD和XCHG。如果LOCK前缀与这些指令之一一起使用,并且源操作数是内存操作数,则可能会生成未定义的操作码异常(#UD)。如果LOCK前缀与任何不在上述列表中的指令一起使用,也会产生未定义的操作码异常。无论是否存在LOCK前缀,XCHG指令都始终声明LOCK#信号。LOCK前缀通常与BTS指令一起使用,以在共享存储器环境中的存储器位置上执行读取 – 修改 – 写入操作。LOCK前缀的完整性不受存储器字段对齐的影响。内存锁定是针对任意不对齐的字段。Linux源码中对于原子自增一是如下定义的:图片LOCK_PREFIX的定义如下所示:
图片
可见:在对称多处理器架构的情况下,LOCK_PREFIX被解释为指令前缀lock。而对于单处理器架构,LOCK_PREFIX不包含任何内容。另外,对于CAS,有cmpxchg指令进行操作。代码如下:

static __always_inline int atomic_cmpxchg(atomic_t *v, int old, int new)
{
return cmpxchg(&v->counter, old, new);
}
#define cmpxchg(ptr, old, new) \
__cmpxchg(ptr, old, new, sizeof(*(ptr)))
#define __cmpxchg(ptr, old, new, size) \
__raw_cmpxchg((ptr), (old), (new), (size), LOCK_PREFIX)
#define __raw_cmpxchg(ptr, old, new, size, lock) \
({ \
__typeof__(*(ptr)) __ret; \
__typeof__(*(ptr)) __old = (old); \
__typeof__(*(ptr)) __new = (new); \
switch (size) { \
case __X86_CASE_B: \
{ \
volatile u8 *__ptr = (volatile u8 *)(ptr); \
asm volatile(lock "cmpxchgb %2,%1" \
: "=a" (__ret), "+m" (*__ptr) \
: "q" (__new), "0" (__old) \
: "memory"); \
break; \
} \
case __X86_CASE_W: \
{ \
volatile u16 *__ptr = (volatile u16 *)(ptr); \
asm volatile(lock "cmpxchgw %2,%1" \
: "=a" (__ret), "+m" (*__ptr) \
: "r" (__new), "0" (__old) \
: "memory"); \
break; \
} \
case __X86_CASE_L: \
{ \
volatile u32 *__ptr = (volatile u32 *)(ptr); \
asm volatile(lock "cmpxchgl %2,%1" \
: "=a" (__ret), "+m" (*__ptr) \
: "r" (__new), "0" (__old) \
: "memory"); \
break; \
} \
case __X86_CASE_Q: \
{ \
volatile u64 *__ptr = (volatile u64 *)(ptr); \
asm volatile(lock "cmpxchgq %2,%1" \
: "=a" (__ret), "+m" (*__ptr) \
: "r" (__new), "0" (__old) \
: "memory"); \
break; \
} \
default: \
__cmpxchg_wrong_size(); \
} \
__ret; \
})

在ARM架构下,没有LOCK#指令,其具体实现如下:## ARMv6之前 早期的ARM架构是不支持SMP的,这些单核架构的CPU实现原子操作的方式就是通过关闭CPU中断来完成的。在Linux对于ARM架构的代码下有如下:图片
这个是好多操作共用的一套代码。
对于cmpxchg:图片可以看到,对v->counter的操作是一个临界区,指令的执行不能被打断,内存的访问也需要保持没有干扰。ARMv6以前的版本通过关本地中断来保护这块临界区,看起来相当简单,其奥秘就在于ARMv6以前的版本不支持SMP。比如经典的read-modify-write问题,其本质是保持一个对内存read和write访问的原子性问题,也就是说内存的读和写的访问不能被打断。对该问题的解决可以通过硬件、软件或者软硬件结合的方法来进行。早期的ARM CPU给出的方案就是依赖硬件:SWP这个汇编指令执行了一次读内存操作、一次写内存操作,但是从程序员的角度看,SWP这条指令就是原子的,读写之间不会被任何的异步事件打断。**具体底层的硬件是如何做的呢?**这时候,硬件会提供一个lock signal,在进行memory操作的时候设定lock信号,告诉总线这是一个不可被中断的内存访问,直到完成了SWP需要进行的两次内存访问之后再clear lock信号。多说一点关于SWP和SWPB的内容
这两个指令是用来同步的,不是用来执行原子操作的。在将独占访问引入ARM架构之前,SWP和SWPB指令常用于同步。其局限性是:如果中断在触发交换操作时触发,则处理器必须在执行中断之前完成指令的加载和存储部分,从而增加中断延迟。由于独立加载和独占存储是单独的指令,因此在使用新的同步基元时会降低此效果。但是在多核系统中,交换指令期间阻止所有处理器访问主存会降低系统性能。在处理器工作在不同频率但是共享相同主存的多核系统中,情况尤其如此。所以在ARMv6及以后的版本中,弃用了SWP, ARMv6架构引入了独占访问内存为止的概念,提供了更灵活的原子内存更新。ARMv6体系结构以Load-Exclusive和Store-Exclusive同步原语LDREX和STREX的形式引入了Load Link和Store Conditional指令。从ARMv6T2开始,这些指令在ARM和Thumb指令集中可用。独立加载和专有存储提供了灵活和可扩展的同步,取代了弃用的SWP和SWPB指令。后来使用的是LDREX和STREX指令,在armv7之后就用了ldrex和strex:访存指令LDREX/STREX和普通的LDR/STR访存指令不一样,它是“独占”访存指令。这对指令访存过程由一个称作“exclusive monitor”的部件来监视是否可以进行独占访问。(1)LDREX R1 ,[R0] 指令是以独占的方式从R0所指的地址中取一个字存放到R0中;(2)STREX R2,R1,[R0] 指令是以独占的方式用R1来更新内存,如果独占访问条件允许,则更新成功并返回0到R2,否则失败返回1到R2。

*原文链接:https://www.windsings.com/posts/2a85d31f/*

版权归原作者或平台所有,仅供学习参考与学术研究,如有侵权,麻烦联系删除~感谢
最后 好了,今天就跟大家分享这么多了,如果你觉得有所收获,一定记得点个赞~最后一个bug,bug菌唯一创作平台~
推荐专辑 点击蓝色字体即可跳转
☞ MCU进阶专辑 ☞ 嵌入式C语言进阶专辑 ☞ “bug说”专辑 ☞ 专辑|Linux应用程序编程大全☞ 专辑|学点网络知识☞ 专辑|手撕C语言☞ 专辑|手撕C++语言☞ 专辑|经验分享☞ 专辑|电能控制技术☞ 专辑 | 从单片机到Linux






推荐阅读
  • 本文深入探讨了Linux系统中网卡绑定(bonding)的七种工作模式。网卡绑定技术通过将多个物理网卡组合成一个逻辑网卡,实现网络冗余、带宽聚合和负载均衡,在生产环境中广泛应用。文章详细介绍了每种模式的特点、适用场景及配置方法。 ... [详细]
  • 本文将深入探讨PHP编程语言的基本概念,并解释PHP概念股的含义。通过详细解析,帮助读者理解PHP在Web开发和股票市场中的重要性。 ... [详细]
  • 本文详细探讨了Netty中Future及其子类的设计与实现,包括其在并发编程中的作用和具体应用场景。我们将介绍Future的继承体系、关键方法的实现细节,并讨论如何通过监听器和回调机制来处理异步任务的结果。 ... [详细]
  • 本文详细介绍了如何在Ubuntu系统中下载适用于Intel处理器的64位版本,涵盖了不同Linux发行版对64位架构的不同命名方式,并提供了具体的下载链接和步骤。 ... [详细]
  • 本文详细记录了在银河麒麟操作系统和龙芯架构上使用 Qt 5.15.2 进行项目打包时遇到的问题及解决方案,特别关注于 linuxdeployqt 工具的应用。 ... [详细]
  • Win11扩展卷无法使用?解决扩展卷灰色问题的指南
    本文详细介绍了在Windows 11中遇到扩展卷灰色无法使用时的解决方案,帮助用户快速恢复磁盘扩展功能。 ... [详细]
  • 深入探讨CPU虚拟化与KVM内存管理
    本文详细介绍了现代服务器架构中的CPU虚拟化技术,包括SMP、NUMA和MPP三种多处理器结构,并深入探讨了KVM的内存虚拟化机制。通过对比不同架构的特点和应用场景,帮助读者理解如何选择最适合的架构以优化性能。 ... [详细]
  • 本文探讨了如何在 PHP 的 Eloquent ORM 中实现数据表之间的关联查询,并通过具体示例详细解释了如何将关联数据嵌入到查询结果中。这不仅提高了数据查询的效率,还简化了代码逻辑。 ... [详细]
  • PostgreSQL 10 离线安装指南
    本文详细介绍了如何在无法联网的服务器上进行 PostgreSQL 10 的离线安装,并涵盖了从下载安装包到配置远程访问的完整步骤。 ... [详细]
  • 本文详细介绍了C语言的起源、发展及其标准化过程,涵盖了从早期的BCPL和B语言到现代C语言的演变,并探讨了其在操作系统和跨平台编程中的重要地位。 ... [详细]
  • 本文详细介绍了如何通过RPM包在Linux系统(如CentOS)上安装MySQL 5.6。涵盖了检查现有安装、下载和安装RPM包、配置MySQL以及设置远程访问和开机自启动等步骤。 ... [详细]
  • 在创建新的Android项目时,您可能会遇到aapt错误,提示无法打开libstdc++.so.6共享对象文件。本文将探讨该问题的原因及解决方案。 ... [详细]
  • CentOS 6.5 上安装 MySQL 5.7.23 的详细步骤
    本文详细介绍如何在 CentOS 6.5 系统上成功安装 MySQL 5.7.23,包括卸载旧版本、下载安装包、配置文件修改及启动服务等关键步骤。 ... [详细]
  • 编写了几个500行左右代码的程序,但基本上解决问题还是面向过程的思维,如何从问题中抽象出类,形成类的划分和设计,从而用面向对象的思维解决问题?有这方面的入门好书吗?最好是结合几个具体的案例分析的 ... [详细]
  • 主板IO用W83627THG,用VC如何取得CPU温度,系统温度,CPU风扇转速,VBat的电压. ... [详细]
author-avatar
mobiledu2502899727
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有