热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

玩转数据结构(11)删除二分搜索树的节点

删除二分搜索树的节点一、删除二分搜索树的最小值和最大值1.先找到二分搜索树的最小值和最大值最小值:二叉树中的最左侧的元素(不存在左孩子的节点
删除二分搜索树的节点

一、删除二分搜索树的最小值和最大值

1.先找到二分搜索树的最小值和最大值

最小值:二叉树中的最左侧的元素(不存在左孩子的节点)

最大值:二叉树中的最右侧的元素(不存在右孩子的节点)

2.再删除二分搜索树的最小值和最大值

    1.当要删除的节点为叶子节点时,直接删除即可

2.当要删除的节点不是叶子节点时,将该节点删除,删除后将其整个右子树变为根节点的左子树即可

       

代码实现:

BST.java

import java.util.LinkedList;
import java.util.Queue;
import java.util.Stack;public class BST> {private class Node{public E e;public Node left, right;public Node(E e){this.e &#61; e;left &#61; null;right &#61; null;}}private Node root;private int size;public BST(){root &#61; null;size &#61; 0;}public int size(){return size;}public boolean isEmpty(){return size &#61;&#61; 0;}// 向二分搜索树中添加新的元素epublic void add(E e){root &#61; add(root, e);}// 向以node为根的二分搜索树中插入元素e&#xff0c;递归算法// 返回插入新节点后二分搜索树的根private Node add(Node node, E e){if(node &#61;&#61; null){size &#43;&#43;;return new Node(e);}if(e.compareTo(node.e) <0)node.left &#61; add(node.left, e);else if(e.compareTo(node.e) > 0)node.right &#61; add(node.right, e);return node;}// 看二分搜索树中是否包含元素epublic boolean contains(E e){return contains(root, e);}// 看以node为根的二分搜索树中是否包含元素e, 递归算法private boolean contains(Node node, E e){if(node &#61;&#61; null)return false;if(e.compareTo(node.e) &#61;&#61; 0)return true;else if(e.compareTo(node.e) <0)return contains(node.left, e);else // e.compareTo(node.e) > 0return contains(node.right, e);}// 二分搜索树的前序遍历public void preOrder(){preOrder(root);}// 前序遍历以node为根的二分搜索树, 递归算法private void preOrder(Node node){if(node &#61;&#61; null)return;System.out.println(node.e);preOrder(node.left);preOrder(node.right);}// 二分搜索树的非递归前序遍历public void preOrderNR(){Stack stack &#61; new Stack<>();stack.push(root);while(!stack.isEmpty()){Node cur &#61; stack.pop();System.out.println(cur.e);if(cur.right !&#61; null)stack.push(cur.right);if(cur.left !&#61; null)stack.push(cur.left);}}// 二分搜索树的中序遍历public void inOrder(){inOrder(root);}// 中序遍历以node为根的二分搜索树, 递归算法private void inOrder(Node node){if(node &#61;&#61; null)return;inOrder(node.left);System.out.println(node.e);inOrder(node.right);}// 二分搜索树的后序遍历public void postOrder(){postOrder(root);}// 后序遍历以node为根的二分搜索树, 递归算法private void postOrder(Node node){if(node &#61;&#61; null)return;postOrder(node.left);postOrder(node.right);System.out.println(node.e);}// 二分搜索树的层序遍历public void levelOrder(){Queue q &#61; new LinkedList<>();q.add(root);while(!q.isEmpty()){Node cur &#61; q.remove();System.out.println(cur.e);if(cur.left !&#61; null)q.add(cur.left);if(cur.right !&#61; null)q.add(cur.right);}}// 寻找二分搜索树的最小元素&#xff08;新增代码&#xff09;public E minimum(){if(size &#61;&#61; 0) //二叉树中没有元素throw new IllegalArgumentException("BST is empty");Node minNode &#61; minimum(root);return minNode.e;}// 返回以node为根的二分搜索树的最小值所在的节点&#xff08;新增代码&#xff09;private Node minimum(Node node){if( node.left &#61;&#61; null ) //最左侧为空的节点return node;return minimum(node.left);}// 寻找二分搜索树的最大元素&#xff08;新增代码&#xff09;public E maximum(){if(size &#61;&#61; 0)throw new IllegalArgumentException("BST is empty");return maximum(root).e;}// 返回以node为根的二分搜索树的最大值所在的节点&#xff08;新增代码&#xff09;private Node maximum(Node node){if( node.right &#61;&#61; null )return node;return maximum(node.right);}// 从二分搜索树中删除最小值所在节点, 返回最小值&#xff08;新增代码&#xff09;public E removeMin(){E ret &#61; minimum();root &#61; removeMin(root); //从root 开始尝试删除最小节点return ret;}// 删除掉以node为根的二分搜索树中的最小节点&#xff08;新增代码&#xff09;// 返回删除节点后新的二分搜索树的根private Node removeMin(Node node){if(node.left &#61;&#61; null){ //node 没有左孩子的情况Node rightNode &#61; node.right; //保存当前节点的右子树node.right &#61; null; //将当前的node节点从二叉树中脱离关系size --;return rightNode; //使右孩子成为新的节点}node.left &#61; removeMin(node.left);//node 有左孩子的情况&#xff0c;删除掉当前树的左子树对应的最小值return node;}// 从二分搜索树中删除最大值所在节点&#xff08;新增代码&#xff09;public E removeMax(){E ret &#61; maximum();root &#61; removeMax(root);return ret;}// 删除掉以node为根的二分搜索树中的最大节点&#xff08;新增代码&#xff09;// 返回删除节点后新的二分搜索树的根private Node removeMax(Node node){if(node.right &#61;&#61; null){Node leftNode &#61; node.left;node.left &#61; null;size --;return leftNode;}node.right &#61; removeMax(node.right);return node;}&#64;Overridepublic String toString(){StringBuilder res &#61; new StringBuilder();generateBSTString(root, 0, res);return res.toString();}// 生成以node为根节点&#xff0c;深度为depth的描述二叉树的字符串private void generateBSTString(Node node, int depth, StringBuilder res){if(node &#61;&#61; null){res.append(generateDepthString(depth) &#43; "null\n");return;}res.append(generateDepthString(depth) &#43; node.e &#43;"\n");generateBSTString(node.left, depth &#43; 1, res);generateBSTString(node.right, depth &#43; 1, res);}private String generateDepthString(int depth){StringBuilder res &#61; new StringBuilder();for(int i &#61; 0 ; i }

Main.java

import java.util.ArrayList;
import java.util.Random;public class Main {public static void main(String[] args) {BST bst &#61; new BST<>();Random random &#61; new Random();int n &#61; 1000; //向二叉树中添加1000个元素// test removeMinfor(int i &#61; 0 ; i nums &#61; new ArrayList<>();while(!bst.isEmpty()) //bst 不为空的话&#xff0c; nums.add(bst.removeMin()); //从 bst 中取出元素&#xff0c;将取出元素的最小值添加到 nums 的ArrayList中 System.out.println(nums);for(int i &#61; 1 ; i nums.get(i))throw new IllegalArgumentException("Error!");System.out.println("removeMin test completed.");// test removeMaxfor(int i &#61; 0 ; i ();while(!bst.isEmpty())nums.add(bst.removeMax());System.out.println(nums);for(int i &#61; 1 ; i }

输出&#xff1a;

二、删除二分搜索树的任意元素

1.删除只有左孩子的节点&#xff1a;节点删除之后&#xff0c;将左孩子所在的二叉树取代其位置&#xff1b;连在原来父亲元素右节点的位置

2.删除只有右孩子的节点&#xff1a;节点删除之后&#xff0c;将右孩子所在的二叉树取代其位置&#xff1b;连在原来父亲元素左节点的位置

3.难点&#xff1a;删除有左右孩子的节点&#xff08;删除左右都有孩子的节点d&#xff09;

在图中&#xff0c;要删除58&#xff0c;就是要找到58的替代节点&#xff0c;找 58 &#xff08;d&#xff09;的后继&#xff1a;所有元素中&#xff0c;离 58 最近的且比 58 大的节点&#xff0c;即图中的 59 (s)【即右子树中的最小值】

示例代码&#xff1a;BST.java

import java.util.LinkedList;
import java.util.Queue;
import java.util.Stack;public class BST> {private class Node{public E e;public Node left, right;public Node(E e){this.e &#61; e;left &#61; null;right &#61; null;}}private Node root;private int size;public BST(){root &#61; null;size &#61; 0;}public int size(){return size;}public boolean isEmpty(){return size &#61;&#61; 0;}// 向二分搜索树中添加新的元素epublic void add(E e){root &#61; add(root, e);}// 向以node为根的二分搜索树中插入元素e&#xff0c;递归算法// 返回插入新节点后二分搜索树的根private Node add(Node node, E e){if(node &#61;&#61; null){size &#43;&#43;;return new Node(e);}if(e.compareTo(node.e) <0)node.left &#61; add(node.left, e);else if(e.compareTo(node.e) > 0)node.right &#61; add(node.right, e);return node;}// 看二分搜索树中是否包含元素epublic boolean contains(E e){return contains(root, e);}// 看以node为根的二分搜索树中是否包含元素e, 递归算法private boolean contains(Node node, E e){if(node &#61;&#61; null)return false;if(e.compareTo(node.e) &#61;&#61; 0)return true;else if(e.compareTo(node.e) <0)return contains(node.left, e);else // e.compareTo(node.e) > 0return contains(node.right, e);}// 二分搜索树的前序遍历public void preOrder(){preOrder(root);}// 前序遍历以node为根的二分搜索树, 递归算法private void preOrder(Node node){if(node &#61;&#61; null)return;System.out.println(node.e);preOrder(node.left);preOrder(node.right);}// 二分搜索树的非递归前序遍历public void preOrderNR(){Stack stack &#61; new Stack<>();stack.push(root);while(!stack.isEmpty()){Node cur &#61; stack.pop();System.out.println(cur.e);if(cur.right !&#61; null)stack.push(cur.right);if(cur.left !&#61; null)stack.push(cur.left);}}// 二分搜索树的中序遍历public void inOrder(){inOrder(root);}// 中序遍历以node为根的二分搜索树, 递归算法private void inOrder(Node node){if(node &#61;&#61; null)return;inOrder(node.left);System.out.println(node.e);inOrder(node.right);}// 二分搜索树的后序遍历public void postOrder(){postOrder(root);}// 后序遍历以node为根的二分搜索树, 递归算法private void postOrder(Node node){if(node &#61;&#61; null)return;postOrder(node.left);postOrder(node.right);System.out.println(node.e);}// 二分搜索树的层序遍历public void levelOrder(){Queue q &#61; new LinkedList<>();q.add(root);while(!q.isEmpty()){Node cur &#61; q.remove();System.out.println(cur.e);if(cur.left !&#61; null)q.add(cur.left);if(cur.right !&#61; null)q.add(cur.right);}}// 寻找二分搜索树的最小元素public E minimum(){if(size &#61;&#61; 0)throw new IllegalArgumentException("BST is empty!");return minimum(root).e;}// 返回以node为根的二分搜索树的最小值所在的节点private Node minimum(Node node){if(node.left &#61;&#61; null)return node;return minimum(node.left);}// 寻找二分搜索树的最大元素public E maximum(){if(size &#61;&#61; 0)throw new IllegalArgumentException("BST is empty");return maximum(root).e;}// 返回以node为根的二分搜索树的最大值所在的节点private Node maximum(Node node){if(node.right &#61;&#61; null)return node;return maximum(node.right);}// 从二分搜索树中删除最小值所在节点, 返回最小值public E removeMin(){E ret &#61; minimum();root &#61; removeMin(root);return ret;}// 删除掉以node为根的二分搜索树中的最小节点// 返回删除节点后新的二分搜索树的根private Node removeMin(Node node){if(node.left &#61;&#61; null){Node rightNode &#61; node.right;node.right &#61; null;size --;return rightNode;}node.left &#61; removeMin(node.left);return node;}// 从二分搜索树中删除最大值所在节点public E removeMax(){E ret &#61; maximum();root &#61; removeMax(root);return ret;}// 删除掉以node为根的二分搜索树中的最大节点// 返回删除节点后新的二分搜索树的根private Node removeMax(Node node){if(node.right &#61;&#61; null){Node leftNode &#61; node.left;node.left &#61; null;size --;return leftNode;}node.right &#61; removeMax(node.right);return node;}// 从二分搜索树中删除元素为e的节点&#xff08;新增代码&#xff09;public void remove(E e){root &#61; remove(root, e);}// 删除掉以node为根的二分搜索树中值为e的节点, 递归算法&#xff08;新增代码&#xff09;// 返回删除节点后新的二分搜索树的根private Node remove(Node node, E e){//&#xff08;新增代码&#xff09;if( node &#61;&#61; null )return null;if( e.compareTo(node.e) <0 ){ //要删除的元素 e 要比 node上的元素 e 要小的话node.left &#61; remove(node.left , e); //到左子树中删除return node;}else if(e.compareTo(node.e) > 0 ){//要删除的元素 e 要比 node上的元素 e 要大的话node.right &#61; remove(node.right, e); //到右子树中删除return node;}else{ // e.compareTo(node.e) &#61;&#61; 0// 待删除节点左子树为空的情况//&#xff08;新增代码&#xff09;if(node.left &#61;&#61; null){ Node rightNode &#61; node.right; //保存右子树内容node.right &#61; null; //将 右子树与二叉树断开关系size --;return rightNode; //返回原来元素的右孩子【右子树的根节点】}// 待删除节点右子树为空的情况if(node.right &#61;&#61; null){Node leftNode &#61; node.left;node.left &#61; null;size --;return leftNode;}// 待删除节点左右子树均不为空的情况//&#xff08;新增代码&#xff09;// 找到比待删除节点大的最小节点, 即待删除节点右子树的最小节点// 用这个节点顶替待删除节点的位置Node successor &#61; minimum(node.right); //要找到 node 节点的后继successor.right &#61; removeMin(node.right); //从node.right中removeMin 掉其中的最小节点&#xff0c;根节点返回作为后继的右子树successor.left &#61; node.left; // successor 替代原来的 node 节点node.left &#61; node.right &#61; null; //node 节点与二分搜索树脱离关系return successor;} }&#64;Overridepublic String toString(){StringBuilder res &#61; new StringBuilder();generateBSTString(root, 0, res);return res.toString();}// 生成以node为根节点&#xff0c;深度为depth的描述二叉树的字符串private void generateBSTString(Node node, int depth, StringBuilder res){if(node &#61;&#61; null){res.append(generateDepthString(depth) &#43; "null\n");return;}res.append(generateDepthString(depth) &#43; node.e &#43;"\n");generateBSTString(node.left, depth &#43; 1, res);generateBSTString(node.right, depth &#43; 1, res);}private String generateDepthString(int depth){StringBuilder res &#61; new StringBuilder();for(int i &#61; 0 ; i }

补充&#xff1a;

总结&#xff1a;

1.二分搜索树的顺序性&#xff1a;放入.二分搜索树的元素都是有序的&#xff1b;

2.floor 和 ceil:floor:比45小的最大元素&#xff1b;ceil:比45大的最小元素【这两个可以不在二分搜索树中】

3.rank &#xff1a;58 在整个树中所有的元素里排第几

4.select:rank 的反向操作

5.维护 size 的二分搜索树

6.支持重复元素的二分搜索树&#xff08;定义左子树的节点 <&#61; 父节点的值&#xff09;


推荐阅读
  • 利用决策树预测NBA比赛胜负的Python数据挖掘实践
    本文通过使用2013-14赛季NBA赛程与结果数据集以及2013年NBA排名数据,结合《Python数据挖掘入门与实践》一书中的方法,展示如何应用决策树算法进行比赛胜负预测。我们将详细讲解数据预处理、特征工程及模型评估等关键步骤。 ... [详细]
  • 本教程详细介绍了如何使用 TensorFlow 2.0 构建和训练多层感知机(MLP)网络,涵盖回归和分类任务。通过具体示例和代码实现,帮助初学者快速掌握 TensorFlow 的核心概念和操作。 ... [详细]
  • Java 实现二维极点算法
    本文介绍了一种使用 Java 编程语言实现的二维极点算法。该算法用于从一组二维坐标中筛选出极点,适用于需要处理几何图形和空间数据的应用场景。文章不仅详细解释了算法的工作原理,还提供了完整的代码示例。 ... [详细]
  • 深入解析Java枚举及其高级特性
    本文详细介绍了Java枚举的概念、语法、使用规则和应用场景,并探讨了其在实际编程中的高级应用。所有相关内容已收录于GitHub仓库[JavaLearningmanual](https://github.com/Ziphtracks/JavaLearningmanual),欢迎Star并持续关注。 ... [详细]
  • 本文介绍如何从字符串中移除大写、小写、特殊、数字和非数字字符,并提供了多种编程语言的实现示例。 ... [详细]
  • 本问题探讨了在特定条件下排列儿童队伍的方法数量。题目要求计算满足条件的队伍排列总数,并使用递推算法和大数处理技术来解决这一问题。 ... [详细]
  • 深入理解Lucene搜索机制
    本文旨在帮助读者全面掌握Lucene搜索的编写步骤、核心API及其应用。通过详细解析Lucene的基本查询和查询解析器的使用方法,结合架构图和代码示例,带领读者深入了解Lucene搜索的工作流程。 ... [详细]
  • JavaScript 基础语法指南
    本文详细介绍了 JavaScript 的基础语法,包括变量、数据类型、运算符、语句和函数等内容,旨在为初学者提供全面的入门指导。 ... [详细]
  • 异常要理解Java异常处理是如何工作的,需要掌握一下三种异常类型:检查性异常:最具代表性的检查性异常是用户错误或问题引起的异常ÿ ... [详细]
  • 本文详细解析了Java中hashCode()和equals()方法的实现原理及其在哈希表结构中的应用,探讨了两者之间的关系及其实现时需要注意的问题。 ... [详细]
  • 丽江客栈选择问题
    本文介绍了一道经典的算法题,题目涉及在丽江河边的n家特色客栈中选择住宿方案。两位游客希望住在色调相同的两家客栈,并在晚上选择一家最低消费不超过p元的咖啡店小聚。我们将详细探讨如何计算满足条件的住宿方案总数。 ... [详细]
  • 二维几何变换矩阵解析
    本文详细介绍了二维平面上的三种常见几何变换:平移、缩放和旋转。通过引入齐次坐标系,使得这些变换可以通过统一的矩阵乘法实现,从而简化了计算过程。文中不仅提供了理论推导,还附有Python代码示例,帮助读者更好地理解这些概念。 ... [详细]
  • 2018-2019学年第六周《Java数据结构与算法》学习总结
    本文总结了2018-2019学年第六周在《Java数据结构与算法》课程中的学习内容,重点介绍了非线性数据结构——树的相关知识及其应用。 ... [详细]
  • Redux入门指南
    本文介绍Redux的基本概念和工作原理,帮助初学者理解如何使用Redux管理应用程序的状态。Redux是一个用于JavaScript应用的状态管理库,特别适用于React项目。 ... [详细]
  • 本文总结了优化代码可读性的核心原则与技巧,通过合理的变量命名、函数和对象的结构化组织,以及遵循一致性等方法,帮助开发者编写更易读、维护性更高的代码。 ... [详细]
author-avatar
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有