热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

深入解析UnityURP/SRP渲染管线:匠心打造的全面指南

本文深入探讨了Unity中的URP、SRP和HDRP渲染管线,详细解析了它们之间的关系及各自的特点。首先介绍了SRP的基本概念及其在Unity渲染架构中的作用,随后重点阐述了URP和HDRP的设计理念与应用场景。文章还分析了SRP诞生的背景,解释了为何Unity需要引入这一灵活的渲染框架,以满足不同项目的需求。通过对比URP和HDRP,读者可以更好地理解如何选择合适的渲染管线,以优化项目的性能和视觉效果。

 

目录

SRP/URP/HDRP之间的关系

SRP是什么?

URP是什么?

HDRP是什么?

2. 为什么诞生SRP?

3. URP 和 内置渲染管线 性能对比

1. 首先来说说光照处理部分

2. 接下来看看SRP Batcher(重点)

SRP Batcher 是什么?

SRP Batcher是怎么优化的?

内置渲染管线和URP的CPU原理图对比:

SRP Batcher 兼容性

3. URP的增加功能

1.渲染管线扩展/自定义渲染器(待补充)

1. 第一人称对象

2. 卡通描边

3. 对象遮挡

4. 模糊清晰混合

2. 摄像机堆叠(待更新)

URP源码解析(待更新)

参考文章:

额外内容




SRP/URP/HDRP之间的关系

下图是各个管线的关系图

根据上图所示,URP是Unity可编程渲染管线(SRP)的一种,所以了解URP之前需要先了解SRP是什么。(在文章最下面,额外内容里附了张渲染管线流程图)


SRP是什么?

SRP全称为Scriptable Render Pipeline(可编程渲染管线/脚本化渲染管线),是Unity提供的新渲染系统,可以在Unity通过C#脚本调用一系列API配置和执行渲染命令的方式来实现渲染流程,SRP将这些命令传递给Unity底层图形体系结构,然后再将指令发送给图形API。

说白了就是我们可以用SRP的API来创建自定义的渲染管线,可用来调整渲染流程或修改或增加功能。

它主要把渲染管线拆分成二层:


  • 一层是比较底层的渲染API层,像OpenGL,D3D等相关的都封装起来。

  • 另一层是渲染管线上层,上层代码使用C#来编写。在C#这层不需要关注底层在不同平台上渲染API的差别,也不需要关注具体如何做一个Draw Call


URP是什么?

它的全称为Universal Render Pipeline(通用渲染管线), 它是Unity官方基于SRP提供的模板,它的前身是LWRP(Lightweight RP即轻量级渲染管线), 在2019.3开始改名为URP,它涵盖了范围广泛的不同平台,是针对跨平台开发而构建的,性能比内置管线要好,另外可以进行自定义,实现不同风格的渲染,通用渲染管线未来将成为在Unity中进行渲染的基础 。

平台范围:可以在Unity当前支持的任何平台上使用

 


HDRP是什么?

它的全称为High Definition Render Pipeline(高清晰度渲染管线),它也是Unity官方基于SRP提供的模板,它更多是针对高端设备,如游戏主机和高端台式机,它更关注于真实感图形和渲染,该管线仅于以下平台兼容:


  • Windows和Windows Store,带有DirectX 11或DirectX 12和Shader Model 5.0
  • 现代游戏机(Sony PS4和Microsoft Xbox One)
  • 使用金属图形的MacOS(最低版本10.13)
  • 具有Vulkan的Linux和Windows平台

在此文章对HDRP不过多描述。

 


2. 为什么诞生SRP?

内置渲染管线的缺陷


  • 定制性差:过去,Unity有一套内置渲染管线,渲染管线全部写在引擎的源码里。大家基本上不能改动,除非是买了Unity源码客户,当然大部分开发者是不会去改源码,所以过去的管线对开发者来说,很难进行定制。
  • 代码脓肿,效果效率无法做到最佳:内置渲染管线在一个渲染管线里面支持所有的二十多个平台,包括非常高端的PC平台,也包括非常低端的平台,很老的手机也要支持,所以代码越来越浓肿,很难做到使效率和效果做到最佳。

目的:


  • 为了解决仅有一个默认渲染管线,造成的可配置型、可发现性、灵活性等问题。决定在C++端保留一个非常小的渲染内核,让C#端可以通过API暴露出更多的选择性,也就是说,Unity会提供一系列的C# API以及内置渲染管线的C#实现;这样一来,一方面可以保证C++端的代码都能严格通过各种白盒测试,另一方面C#端代码就可以在实际项目中调整。

 

在看URP 和 内置渲染管线 性能对比之前最好先了解DrawCall,Batches,SetPassCalls分别是什么值。

DrawCall,Batches,SetPass calls文章:https://blog.csdn.net/qq_30259857/article/details/110062397

 


3. URP 和 内置渲染管线 性能对比

主要提速的有两个方面

1. 光照处理(包括阴影)

2. SRP Bacher (SRP 批处理)(重点)

其他可以看看官网图,下面是官网的对比表链接和图。

https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@8.2/manual/universalrp-builtin-feature-comparison.html

 


1. 首先来说说光照处理部分

如上图所示,老的渲染管线使用Multi-Pass的Forward Rendering,就是多Pass的正向渲染。最大的问题是如果要在场景里要加很多动态光的话,每一个动态光都有可能会增加一个Pass,这个动态光所影响的物体要多画一遍。

这就导致如果游戏里想要有多个动态光的话,可能这个场景会被画很多遍,性能会很差。它带来的问题是所有的游戏几乎都不会用多个动态光,因为实在太费性能了。

在过去制作移动的游戏的过程中,大家的标准做法都是烘焙Lightmap。

现在URP就解决了这个问题。实现了一个单PASS的正向渲染。可以支持多盏动态光,但是全部动态灯光都会放在一个Pass里渲染,这样带来的问题是要限制灯光的数量,因为每次Draw Call去画的时候,传给GPU的参数是有限的。

如果灯光数量特别多,参数太多,那就会无法在一次Draw Call里完成很多个灯光。所以我们有一些限制,在轻量级渲染管线LWRP里,目前是支持1盏平行光,每个对象可能只能接受4个动态光。每个摄像机也有一些限制,这是为了我们可以把所有的计算放在一个Pass里面。

接下来看看内置渲染管线URP各种情况下的光照处理实验对比

以下是分别在四种情况下对比所得出的结论


  1. 无光源。 (没区别)
  2. 一个平行光,无阴影。(没区别)
  3. 一个平行光,一个点光源,无阴影。
    结论:内置渲染管线跟只有一个平行光时比起来Batches将近增加了一倍,而URP的Batches和SetPass calls跟一个平行光时一样,一点都没有增加。
  4. 一个动态光,有阴影。
    结论:在阴影的处理方面URP性能比内置渲染管线好很多。
     

URP光照处理最终结论:


1. 性能上阴影处理方面比内置渲染管线好很多。

2. URP平行光基础上添加动态光没有带来额外的Batches和SetPass calls性能开销。


下面有图有真相

1. 无光源情况下的对比


内置渲染管线:

URP:

结论:Batches,SetPass Calls 基本是一样的,没区别。


2. 一个平行光,无阴影下的对比


内置渲染管线:

URP:

结论:Batches,SetPass Calls 基本是一样的,没区别。


3. 一个平行光,一个点光源,无阴影下的对比


内置渲染管线:

URP:

结论:可以发现内置渲染管线的Batches将近增加了一倍,而URP的Batches和SetPass calls跟一个平行光时一样,一点都没有增加。


4. 一个平行光,有阴影下的对比


内置渲染管线:

URP:

结论:内置渲染管线处理阴影面数增加了45k,Batches增加了759,URP面数增加了11K,Batches增加了188。处理阴影性能上URP好很多。



2. 接下来看看SRP Batcher(重点)


SRP Batcher 是什么?


官网解释:SRP Batcher 是一个底层渲染循环,可通过许多使用同一着色器变体的材质来加快场景中的 CPU 渲染速度。

个人解释:可以把它理解为渲染状态批处理就可以,它的主要目的是减少渲染状态设置的开销,也就是把使用同一着色器变体材质的物体批处理成一个渲染状态,还有就是把物体属性用专用代码快速更新。

上面解释都提到了变体,那么变体怎么理解呢?

看官网描述没太看懂,所以亲自试验了一下,一个SRP Batch 属于一个变体材质,因为SRP Batcher把一个变体材质的物体批处理成一快了。

根据大概试验首先是不同Shader就是不同的变体,如果一样的Shader但图中的参数不一样,也会产生变体,假设有两个物体,用的Shader都是"Lit",第一个物体的SurfaceType属性为 Opaque, 而第二个物体SurfaceType设置为Transparent时,就有两个变体材质。如果图中的参数一样那就是一个变体材质,SRP Batch就是根据变体材质来批处理成一个SRP Batch。

主要参考来自以下文章:

https://docs.unity.cn/cn/2019.3/Manual/SRPBatcher.html

 https://connect.unity.com/p/srp-batcher-jia-su-xuan-ran


过去,Unity 中,可以在一帧内的任何时间修改任何材质的属性。但是,这种做法有一些缺点。当Draw Calls使用新材质时,需要进行很多处理。场景内的材质越多,设置GPU数据所需的CPU资源就越多。解决此问题的传统方法是减少 DrawCall 的数量以优化 CPU 渲染成本,因为 Unity 在发出 DrawCall 之前必须进行很多设置。实际的 CPU 成本来自该设置,而不是来自 GPU DrawCall 本身(DrawCall 只是 Unity 需要推送到 GPU 命令缓冲区的少量字节)。

这是官网说的提速效果:


Unity 2018引入了可编程渲染管线SRP,其中包含新的底层渲染循环SRP Batcher批处理器,它可以大幅提高CPU在渲染时的处理速度,根据场景内容的不同,提升效果为原来的1.2~4倍不等。



SRP Batcher是怎么优化的?


SRP Batcher使材质数据持久保留在 GPU 内存中。如果材质内容不变,SRP Batcher 不需要设置缓冲区并将缓冲区上传到 GPU。还有 SRP Batcher 会使用专用的代码路径来快速更新大型 GPU 缓冲区中的 Unity 引擎属性,如下图。

上面的功能能解决什么问题呢?也就是CPU不需要再设置渲染状态和一大堆渲染数据设置,只需要物体跟缓冲区的数据绑定就可以了。

SRP Batcher 正是通过批处理一系列 Bind 和 Draw GPU 命令来减少 DrawCall 之间的 GPU 设置。



内置渲染管线和URP的CPU原理图对比:


内置渲染管线:(红框部分就是SRP Batcher优化的性能部分)

 

URP:

在把材质数据和物体数据上传好后的流程图:(GPU没有详细画,主要看CPU)

 

上面流程图中绑定的意思是大家都知道Shader里有很多变量,如纹理贴图,Property定义的变量以及内置变量等,个人理解是把缓冲区里存的渲染数据设置给了Shader变量。

 

再看看OpenGL API调用情况

内置渲染管线

URP

可以发现内置渲染管线有 glUniform4fv API,这是设置一大堆着色器数据的函数,也是耗时的部分,而在URP取而代之的是Bind接口,省去了设置着色器数据的开销。


 

根据上面内容我们可以知道SRP Batcher并没有减少DrawCall,而是优化了DrawCall之前的设置开销。

 

SRP Batch值我们可以在Frame Debug窗口可以看得到。

Statistics窗口上的SetPass calls值,其实就是SRP Batch数量 加上 未能批处理的DrawCall数量。

在下图中可以看到SRP Batch批处理了 189个 DrawCalls.

 


SRP Batcher 兼容性

为了使 SRP Batcher 代码路径能够渲染对象:


  • 渲染的对象必须是mesh或者skinned mesh。该对象不能是粒子。
  • 着色器必须与 SRP Batcher 兼容。HDRP 和 URP 中的所有光照和无光照着色器均符合此要求(这些着色器的“粒子”版本除外)。

为了使着色器与 SRP Batcher 兼容:


  • 必须在一个名为“UnityPerDraw”的 CBUFFER 中声明所有内置引擎属性。例如:unity_ObjectToWorld 或 unity_SHAr
  • 必须在一个名为 UnityPerMaterial 的 CBUFFER 中声明所有材质属性。

Property定义的属性也是属于PerMaterial.

 

可以在 Inspector 面板中查看着色器的兼容性状态。

可以在 Inspector 面板中检查特定着色器的兼容性。

可以在 Inspector 面板中检查特定着色器的兼容性。

 

在看看时间对比

内置渲染管线(未开启任何合批)

内置渲染管线(开启静态批处理)

URP未开启SRP Batcfh

URP环境下(开启SRP Batcher)

 

 


3. URP的增加功能

主要有以下功能

1. 渲染管线扩展/自定义渲染器

2. 摄像机堆叠 (待更新)

3. Shader Graphic(Shader图形编程)(待更新)

 


1.渲染管线扩展/自定义渲染器(待补充)

官网案例Github地址:https://github.com/Unity-Technologies/UniversalRenderingExamples

以下是官网案例效果(最后一个是自己实现)


1. 第一人称对象

此Demo主要演示的是摄像机堆叠功能,摄像机堆叠功能下面会单独专门讲。


2. 卡通描边

展示一种创建卡通样式轮廓效果的设置,示例中有两种方法,一种是后处理方法,另一种是船体网格方法。一个示例使用自定义RendererFeature,并且都使用自定义着色器

此Demo有两个渲染器

我们来看看第二个渲染器

主要的卡通描边效果就是在上图中的 Sobel Outlines (Blit)实现,


3. 对象遮挡

当一个对象被另一个对象遮挡时,可以创建效果。

如下图所示,一个角色被建筑挡住时用指定的材质效果来显示角色被遮挡的部分。


 

以下是自己实现的扩展功能


4. 模糊清晰混合

此效果是在模糊的基础上把某层的物体清晰显示的效果。

 


2. 摄像机堆叠(待更新)

 

 


URP源码解析(待更新)

详解属性:

渲染器列表

HDR(High Dynamic Range Imaging):高动态范围成像,

Anti Aliasing(MSAA):抗锯齿

 


参考文章:

Unity轻量级渲染管线LWRP源码及案例解析 - 上:https://connect.unity.com/p/unityqing-liang-ji-xuan-ran-guan-xian-lwrpyuan-ma-ji-an-li-jie-xi-shang

Unity轻量级渲染管线LWRP源码及案例解析 - 下:https://connect.unity.com/p/unityqing-liang-ji-xuan-ran-guan-xian-lwrpyuan-ma-ji-an-li-jie-xi-xia

SRP Batcher:加速渲染:https://connect.unity.com/p/srp-batcher-jia-su-xuan-ran

URP扩展案例 Github地址: https://github.com/Unity-Technologies/UniversalRenderingExamples

Unite Now - (中文字幕)使用URP提升游戏画面效果:https://www.bilibili.com/video/BV1fK4y1a78s

关于静态批处理/动态批处理/GPU Instancing /SRP Batcher的详细剖析:https://zhuanlan.zhihu.com/p/165574008

关于静态批处理/动态批处理/GPU Instancing /SRP Batcher的详细剖析:https://zhuanlan.zhihu.com/p/98642798

Batch, Draw Call, Setpass Call:https://zhuanlan.zhihu.com/p/76562300

Unity3D优化技巧系列(一):Draw Call优化:https://gameinstitute.qq.com/community/detail/113025

Unity ConstantBuffer的一些解析和注意:https://zhuanlan.zhihu.com/p/137455866

 


额外内容

渲染流水线图:

 


推荐阅读
  • Python处理Word文档的高效技巧
    本文详细介绍了如何使用Python处理Word文档,涵盖从基础操作到高级功能的各种技巧。我们将探讨如何生成文档、定义样式、提取表格数据以及处理超链接和图片等内容。 ... [详细]
  • 资源推荐 | TensorFlow官方中文教程助力英语非母语者学习
    来源:机器之心。本文详细介绍了TensorFlow官方提供的中文版教程和指南,帮助开发者更好地理解和应用这一强大的开源机器学习平台。 ... [详细]
  • XNA 3.0 游戏编程:从 XML 文件加载数据
    本文介绍如何在 XNA 3.0 游戏项目中从 XML 文件加载数据。我们将探讨如何将 XML 数据序列化为二进制文件,并通过内容管道加载到游戏中。此外,还会涉及自定义类型读取器和写入器的实现。 ... [详细]
  • 本文详细介绍了macOS系统的核心组件,包括如何管理其安全特性——系统完整性保护(SIP),并探讨了不同版本的更新亮点。对于使用macOS系统的用户来说,了解这些信息有助于更好地管理和优化系统性能。 ... [详细]
  • 在 Flutter 开发过程中,开发者经常会遇到 Widget 构造函数中的可选参数 Key。对于初学者来说,理解 Key 的作用和使用场景可能是一个挑战。本文将详细探讨 Key 的概念及其应用场景,并通过实例帮助你更好地掌握这一重要工具。 ... [详细]
  • Python 异步编程:ASGI 服务器与框架详解
    自 Python 3.5 引入 async/await 语法以来,异步编程迅速崛起,吸引了大量开发者的关注。本文将深入探讨 ASGI(异步服务器网关接口)及其在现代 Python Web 开发中的应用,介绍主流的 ASGI 服务器和框架。 ... [详细]
  • 在Java中,this是一个引用当前对象的关键字。如何通过this获取并显示其所指向的对象的属性和方法?本文详细解释了this的用法及其背后的原理。 ... [详细]
  • 本文介绍百度AI Studio这一集成开发平台,涵盖丰富的AI教程、经典数据集及云端计算资源。通过具体示例——在AI Studio上构建线性回归项目,帮助初学者快速掌握其核心功能与操作方法。 ... [详细]
  • 本文探讨了在iOS平台上开发BLE(蓝牙低功耗)应用程序时遇到的挑战,特别是如何实现应用在后台模式下仍能持续扫描并连接蓝牙设备。文章提供了具体的配置方法和常见的问题解决方案。 ... [详细]
  • NVIDIA Titan RTX深度评测
    NVIDIA的Titan RTX被誉为当前最强大的桌面显卡之一,其卓越的性能和高昂的价格吸引了众多专业人士和技术爱好者的关注。本文将详细介绍Titan RTX的技术规格、性能表现及应用场景。 ... [详细]
  • 2017年人工智能领域的十大里程碑事件回顾
    随着2018年的临近,我们一同回顾过去一年中人工智能领域的重要进展。这一年,无论是政策层面的支持,还是技术上的突破,都显示了人工智能发展的迅猛势头。以下是精选的2017年人工智能领域最具影响力的事件。 ... [详细]
  • 在Win10上利用VS2015构建Caffe2环境
    本文详细介绍如何在Windows 10操作系统上通过Visual Studio 2015编译Caffe2深度学习框架的过程。包括必要的软件安装、环境配置以及常见问题的解决方法。 ... [详细]
  • 随着技术的发展,黑客开始利用AI技术在暗网中创建用户的‘数字孪生’,这一现象引起了安全专家的高度关注。 ... [详细]
  • 1.如何在运行状态查看源代码?查看函数的源代码,我们通常会使用IDE来完成。比如在PyCharm中,你可以Ctrl+鼠标点击进入函数的源代码。那如果没有IDE呢?当我们想使用一个函 ... [详细]
  • 2017年苹果全球开发者大会即将开幕,预计iOS将迎来重大更新,同时Siri智能音箱有望首次亮相,AI技术成为大会焦点。 ... [详细]
author-avatar
哲亚Zoe
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有