ILVS,是Linux Virtual Server的简称,也就是Linux虚拟服务器, 是一个由章文嵩博士发起的自由软件项目。LVS由用户空间的ipvsadm和内核空间的IPVS组成,ipvsadm用来定义规则,IPVS利用ipvsadm定义的规则工作。现在LVS已经是 Linux标准内核的一部分,在Linux2.4内核以前,使用LVS时必须要重新编译内核以支持LVS功能模块,但是从Linux2.4内核以后,已经完全内置了LVS的各个功能模块,无需给内核打任何补丁,可以直接使用LVS提供的各种功能。
通过LVS提供的负载均衡技术和Linux操作系统实现一个高性能、高可用的服务器群集,它具有良好可靠性、可扩展性和可操作性。从而以低廉的成本实现最优的服务性能。LVS的主要特点有以下几个方面:
LVS中有一些常见的术语,如下表所示:
名称 | 解释 |
---|---|
ipvsadm | 用户空间的命令行工具,用于管理集群服务及集群服务上的RS等; |
IPVS | 工作于内核上的netfilter INPUT HOOK之上的程序,可根据用户定义的集群实现请求转发; |
VS | Virtual Server ,虚拟服务 |
Director, Balancer | 负载均衡器、分发器 |
RS | Real Server 后端请求处理服务器 |
CIP | Client IP,客户端IP |
VIP | Director Virtual IP,负载均衡器虚拟IP |
DIP | Director IP,负载均衡器IP |
RIP | Real Server IP,后端请求处理服务器IP |
net.ipv4.conf.lo.arp_ignore = 1
net.ipv4.conf.all.arp_ignore = 1
正常情况下只写第二条就是了,all 是指所有设备的interface,当all和具体的interface比如lo,按照最大的值生效;
net.ipv4.conf.lo.arp_announce = 2
net.ipv4.conf.all.arp_announce = 2
配置arp_announce=2,选择该主机发送网卡上最合适的本地地址作为arp请求的源IP地址。
9. 响应报文通过二层链路传输,最终送达至客户端。
DR模式的特性
1、保证前端路由将目标地址为VIP报文统统发给Director Server,而不是RS
2、RS可以使用私有地址;也可以是公网地址,如果使用公网地址,此时可以通过互联网对RIP进行直接访问
3、RS跟Director Server必须在同一个物理网络中
4、所有的请求报文经由Director Server,但响应报文必须不能进过Director Server
5、不支持地址转换,也不支持端口映射
6、RS可以是大多数常见的操作系统
7、RS的网关绝不允许指向DIP
8、RS上的lo接口配置VIP的IP地址
1.客户端将请求发往前端的负载均衡器,请求报文源地址是CIP,目标地址为VIP。
2.负载均衡器收到报文后,发现请求的是在规则里面存在的地址,那么它将在客户端请求报文的首部再封装一层IP报文,将源地址改为DIP,目标地址改为RIP,并将此包发送给RS。
3.RS收到请求报文后,会首先拆开第一层封装,然后发现里面还有一层IP首部的目标地址是自己lo接口上的VIP,所以会处理次请求报文,并将响应报文通过lo接口送给eth0网卡(这个网卡一般指和调度器在一个网段的网卡)直接发送给客户端。注意:需要设置lo接口的VIP不能在公网上出现。
特点:
(1)RIP,DIP可以使用私有地址;
(2)RIP和DIP可以不再同一个网络中,且RIP的网关未必需要指向DIP;
(3)支持端口映射;
(4)RS的OS可以使用任意类型;
(5)请求报文经由Director,响应报文也经由Director
LVS有两种类型的调度算法,其一就是静态的调度算法,这种算法一经实现,后续就不会发生变化,是既定的规则,后续数据包的流转都会按照这种规则进行按部就班的流转;其二就是动态的调度算法,这种算法是基于网络状况,或者后端服务器的状况,连接的状况等来进行实时的调整,算法的规则会根据实际情况而发生一定的变化。
常用的静态调度算法有以下几种:
1.RR:轮叫调度(Round Robin)
调度器通过”轮叫”调度算法将外部请求按顺序轮流分配到集群中的真实服务器上,它均等地对待每一台服务器,而不管服务器上实际的连接数和系统负载。
2.WRR:加权轮叫(Weight RR)
调度器通过“加权轮叫”调度算法根据真实服务器的不同处理能力来调度访问请求。这样可以保证处理能力强的服务器处理更多的访问流量。调度器可以自动问询真实服务器的负载情况,并动态地调整其权值。
3.DH:目标地址散列调度(Destination Hash )
根据请求的目标IP地址,作为散列键(HashKey)从静态分配的散列表找出对应的服务器,若该服务器是可用的且未超载,将请求发送到该服务器,否则返回空。
4.SH:源地址 hash(Source Hash)
源地址散列”调度算法根据请求的源IP地址,作为散列键(HashKey)从静态分配的散列表找出对应的服务器,若该服务器是可用的且未超载,将请求发送到该服务器,否则返回空。
常用的动态调度算法有下面这些
1.LC:最少链接(Least Connections)
调度器通过”最少连接”调度算法动态地将网络请求调度到已建立的链接数最少的服务器上。如果集群系统的真实服务器具有相近的系统性能,采用”最小连接”调度算法可以较好地均衡负载。
2.WLC:加权最少连接(默认采用的就是这种)(Weighted Least Connections)
在集群系统中的服务器性能差异较大的情况下,调度器采用“加权最少链接”调度算法优化负载均衡性能,具有较高权值的服务器将承受较大比例的活动连接负载。调度器可以自动问询真实服务器的负载情况,并动态地调整其权值。
3.SED:最短延迟调度(Shortest Expected Delay )
在WLC基础上改进,Overhead = (ACTIVE+1)*256/加权,不再考虑非活动状态,把当前处于活动状态的数目+1来实现,数目最小的,接受下次请求,+1的目的是为了考虑加权的时候,非活动连接过多缺陷:当权限过大的时候,会倒置空闲服务器一直处于无连接状态。
4.NQ永不排队/最少队列调度(Never Queue Scheduling NQ)
无需队列。如果有台 realserver的连接数=0就直接分配过去,不需要再进行sed运算,保证不会有一个主机很空间。在SED基础上无论+几,第二次一定给下一个,保证不会有一个主机不会很空闲着,不考虑非活动连接,才用NQ,SED要考虑活动状态连接,对于DNS的UDP不需要考虑非活动连接,而httpd的处于保持状态的服务就需要考虑非活动连接给服务器的压力。
在ipvsadm中有几个常见术语需要解释一下:
配置虚拟服务的语法
ipvsadm 的用法和格式如下:
ipvsadm -A|E -t|u|f virutal-service-address:port [-s scheduler] [-p[timeout]] [-M netmask]
#添加/编辑一条新的虚拟服务器记录。
ipvsadm -D -t|u|f virtual-service-address
#删除一条记录
ipvsadm -C
#清除所有记录
ipvsadm -R
#恢复虚拟服务器规则
ipvsadm -S [-n]
#保存虚拟服务器规则
命令选项解释:
-A --add-service 在内核的虚拟服务器表中添加一条新的虚拟服务器记录。也
就是增加一台新的虚拟服务器。
-E --edit-service 编辑内核虚拟服务器表中的一条虚拟服务器记录。
-D --delete-service 删除内核虚拟服务器表中的一条虚拟服务器记录。
-C --clear 清除内核虚拟服务器表中的所有记录。
-R --restore 恢复虚拟服务器规则
-S --save 保存虚拟服务器规则,输出为-R 选项可读的格式
-s --scheduler scheduler 使用的调度算法,有这样几个选项
rr|wrr|lc|wlc|lblc|lblcr|dh|sh|sed|nq,
-p --persistent [timeout] 持久稳固的服务。这个选项的意思是来自同一个客
户的多次请求,将被同一台真实的服务器处理。timeout 的默认值为300 秒。
-M --netmask netmask persistent granularity mask
配置real server的语法
ipvsadm 的用法和格式如下:
ipvsadm -a|e -t|u|f service-address:port -r real-server-address:port [-g|i|m] [-w weight]
ipvsadm -d -t|u|f service-address -r server-address
ipvsadm -L|l [options]
ipvsadm -Z [-t|u|f service-address]
ipvsadm --set tcp tcpfin udp
ipvsadm --start-daemon state [--mcast-interface interface]
ipvsadm --stop-daemon
ipvsadm -h
命令选项解释:
-a --add-server 在内核虚拟服务器表的一条记录里添加一条新的真实服务器
记录。也就是在一个虚拟服务器中增加一台新的真实服务器
-e --edit-server 编辑一条虚拟服务器记录中的某条真实服务器记录
-d --delete-server 删除一条虚拟服务器记录中的某条真实服务器记录
-L|-l --list 显示内核虚拟服务器表
-Z --zero 虚拟服务表计数器清零(清空当前的连接数量等)
--set tcp tcpfin udp 设置连接超时值
--start-daemon 启动同步守护进程。他后面可以是master 或backup,用来说
明LVS Router 是master 或是backup。在这个功能上也可以采用keepalived 的
VRRP 功能。
--stop-daemon 停止同步守护进程
-h --help 显示帮助信息
-t --tcp-service service-address 说明虚拟服务器提供的是tcp 的服务
[vip:port] or [real-server-ip:port]
-u --udp-service service-address 说明虚拟服务器提供的是udp 的服务
[vip:port] or [real-server-ip:port]
-f --fwmark-service fwmark 说明是经过iptables 标记过的服务类型。
-r --real-server server-address 真实的服务器[Real-Server:port]
-g --gatewaying 指定LVS 的工作模式为直接路由模式(也是LVS 默认的模式)
-i --ipip 指定LVS 的工作模式为隧道模式
-m --masquerading 指定LVS 的工作模式为NAT 模式
-w --weight weight 真实服务器的权值
--mcast-interface interface 指定组播的同步接口
-c --connection 显示LVS 目前的连接 如:ipvsadm -L -c
--timeout 显示tcp tcpfin udp 的timeout 值 如:ipvsadm -L --timeout
--daemon 显示同步守护进程状态
--stats 显示统计信息
--rate 显示速率信息
--sort 对虚拟服务器和真实服务器排序输出
--numeric -n 输出IP 地址和端口的数字形式
上述四种工作模式,DR模式和NAT模式是常用的两种模式,本文就只阐述这两种工作模式。
在实现之前,要先对网段进行一定的规划,每一台服务器都去规划好它的位置,和其所承担的职责。
机器名称 | IP配置 | 服务角色 |
---|---|---|
lvs | VIP:192.168.31.100 DIP:172.25.0.1 | 负载均衡器 |
web1 | RIP:172.25.0.31 | 后端服务器 |
web2 | RIP:172.25.0.32 | 后端服务器 |
web3 | RIP:172.25.0.33 | 后端服务器 |
其数据流转的模型如下图所示:
实现步骤:
安装相关配置工具
[root@lvs1 ~]# yum install ipvsadm -y
lvs-server配置:
1、ipvsadm -A -t 192.168.31.100:80 -s wrr
#开启一个基于80端口的虚拟服务,调度方式为wrr
2、ipvsadm -a -t 192.168.31.100:80 -r 172.25.0.31 -m -w 1
#配置web1服务后端real server 为nat工作方式 权重为1
ipvsadm -a -t 192.168.31.100:80 -r 172.25.0.32 -m -w 1
#配置web2服务后端real server 为nat工作方式 权重为1
ipvsadm -a -t 192.168.31.100:80 -r 172.25.0.33 -m -w 1
#配置web3服务后端real server 为nat工作方式 权重为1
3、修改内核配置,开启路由转发
vim /etc/sysctl.conf 修改 net.ipv4.ip_forward=1
sysctl -p 使其生效
5、real server配置
配置网关指向172.25.0.11,开启web、php-fpm、mysql服务
可分别在三个站点上面写上不同的内容,然后进行测试,看是否能够进行调度。
注:
windows中的浏览器中一般都会有缓存,其调度可能会失效,使用Linux中的curl等命令访问则是没有问题的。能够正常的实现调度。
机器名称 | IP配置 | 服务角色 |
---|---|---|
lvs | VIP:172.25.0.100 DIP:172.25.0.1 | 负载均衡器 |
web1 | RIP:172.25.0.31 | 后端服务器 |
web2 | RIP:172.25.0.32 | 后端服务器 |
web3 | RIP:172.25.0.33 | 后端服务器 |
DR模式的配置是使用命令来实现的,故其中的一些配置在系统重启之后是不存在的,如果要想下次开机启动之后,能够自动的配置,可以将配置的步骤写成脚本,并设置开机自启动。(上面NAT模式的实现也可以设置开机自启动脚本来实现。)
LVS调度器脚本
#!/bin/bash
# chkconfig: 2345 90 10
#LVS script for DR
. /etc/rc.d/init.d/functions
VIP=172.25.0.100
DIP=172.25.0.11
RIP1=172.25.0.31
RIP2=172.25.0.32
RIP3=172.25.0.33
PORT=80
#
#description: hhahahah
case "$1" in
start)
/sbin/ifconfig ens34:0 $VIP broadcast $VIP netmask 255.255.255.255 up
/sbin/route add -host $VIP dev ens34:0
# Since this is the Director we must be able to forward packets
echo 1 > /proc/sys/net/ipv4/ip_forward
# 开启路由转发功能
# Clear all iptables rules.
/sbin/iptables -F
# Reset iptables counters.
/sbin/iptables -Z
# Clear all ipvsadm rules/services.
/sbin/ipvsadm -C
# Add an IP virtual service for VIP 192.168.0.219 port 80
# In this recipe, we will use the round-robin scheduling method.
# In production, however, you should use a weighted, dynamic scheduling method.
/sbin/ipvsadm -A -t $VIP:80 -s wrr
# Now direct packets for this VIP to
# the real server IP (RIP) inside the cluster
/sbin/ipvsadm -a -t $VIP:80 -r $RIP1 -g -w 1
/sbin/ipvsadm -a -t $VIP:80 -r $RIP2 -g -w 1
/sbin/ipvsadm -a -t $VIP:80 -r $RIP3 -g -w 1
;;
stop)
# Stop forwarding packets
echo 0 > /proc/sys/net/ipv4/ip_forward
# Reset ipvsadm
/sbin/ipvsadm -C
# Bring down the VIP interface
/sbin/ifconfig ens34:0 down
# echo "ipvs is stopped..."
;;
*)
echo "Usage: $0 {start|stop}"
;;
esac
将上述内容保存在/etc/init.d/lvs-director文件中,然后添加到服务:
[root@lvs ~]# chmod +x /etc/init.d/lvs-director
# 添加脚本执行权限
[root@lvs ~]# chkconfig --add lvs-director
# 添加脚本到服务当中
[root@lvs ~]# chkconfig lvs-director on
# 设置为开机自启动服务
[root@lvs ~]# /etc/init.d/lvs-director start
# 启动脚本
客户端脚本
#!/bin/bash
#
# Script to start LVS DR real server.
# chkconfig: - 90 10
# description: LVS DR real server
#
. /etc/rc.d/init.d/functions
VIP=172.25.0.100
host=`/bin/hostname`
case "$1" in
start)
# Start LVS-DR real server on this machine.
/sbin/ifconfig lo down
/sbin/ifconfig lo up
echo 1 > /proc/sys/net/ipv4/conf/lo/arp_ignore
#只响应目的IP地址为接收网卡上的本地地址的arp请求
echo 2 > /proc/sys/net/ipv4/conf/lo/arp_announce
# 对查询目标使用最适当的本地地址.在此模式下将忽略这个IP数据包的源地址并尝试选择与能与该地址通信的本地地址.
echo 1 > /proc/sys/net/ipv4/conf/all/arp_ignore
#配置所有网卡只响应自己接口上的ip的arp请求,其余的忽略。
echo 2 > /proc/sys/net/ipv4/conf/all/arp_announce
#必须避免将接口信息向非本网络进行通告
/sbin/ifconfig lo:0 $VIP broadcast $VIP netmask 255.255.255.255 up
/sbin/route add -host $VIP dev lo:0
;;
stop)
# Stop LVS-DR real server loopback device(s).
/sbin/ifconfig lo:0 down
echo 0 > /proc/sys/net/ipv4/conf/lo/arp_ignore
echo 0 > /proc/sys/net/ipv4/conf/lo/arp_announce
echo 0 > /proc/sys/net/ipv4/conf/all/arp_ignore
echo 0 > /proc/sys/net/ipv4/conf/all/arp_announce
;;
*)
# Invalid entry.
echo "$0: Usage: $0 {start||stop}"
exit 1
;;
esac
保存至/etc/init.d/lvs-rs,并赋予执行权限,然后添加为开机启动:
[root@web1~]# chmod +x /etc/init.d/lvs-rs
[root@web1 ~]# chkconfig --add lvs-rs
[root@web1 ~]# chkconfig lvs-rs on
[root@web1 ~]# /etc/init.d/lvs-rs start
web2和web3采用完全相同的配置即可。
在web1、web2和web3上写入不同的站点内容,然后访问172.25.0.100。访问调度器的网址,看是否每次访问的站点内容都是不同的。(windows中的浏览器有缓存功能,如果站点内容有时候是相同的,那么不一定是自己配错了,可能是缓存的原因,避免的办法就是使用Linux的curl命令去访问站点的内容)
参考文献Linux内核参数之arp_ignore和arp_announce
LVS工作总结之原理篇–DR模式