热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

TiDB在多点数字化零售场景下的应用

本文根据多点DMALL数据库团队负责人冯光普在 TUG企业行成都站的分享整理而成,介绍了在数字化零售场景下,TiDB在多点的使用情况、核心业务场景支撑、价值分析、及经验总

作者: guangpu
原文来源:https://tidb.net/blog/2c37f074


本文根据多点 DMALL 数据库团队负责人冯光普在 TUG 企业行成都站的分享整理而成,介绍了在数字化零售场景下,TiDB 在多点的使用情况、核心业务场景支撑、价值分析、及经验总结。

DMALL OS 数字化零售方案

DMALL OS 是多点全渠道数字化零售方案,通过对零售场景中人、货、场全方位数字化解构+重构,赋能零售商和品牌商,帮助客户实现会员数字化、搭建线上线下一体化营销体系、实现门店作业在线化协同、以及智能供应链,助力商家降本、增效、提升客户体验。

Dmall OS数字化零售TiDB应用简介-冯光普-page-004.jpg

截止到 2021 年 6 月,DMALL OS 已助力物美,麦德龙,711,新百,中百,重百,锅圈食汇,DairyFarm,万宁等 120+ 国内外零售商,覆盖连锁商超、便利店、专营零售等业态;并基于全渠道零售数据为国内外知名品牌实现高速增长。

Dmall OS数字化零售TiDB应用简介-冯光普-page-005.jpg

TiDB 整体使用情况

多点自 2019 年接触 TiDB,目前有超过 30 个 TiDB 集群,服务器节点超过 300 个,总数据量 320TB 以上,其中,最大的 TiDB 集群有 40 台服务器规模,数据量级 60TB,集群 QPS 峰值达到了 100K。



  • 2020 年开始调研并在非关键业务中试用,当时版本是 v3.1;

  • 2021 年正式跑通上线,在业财融合场景中落地,版本 v4.0.9,除 TiCDC 偶尔出问题,整体比较稳定;

  • 2022 年整体升级到 v5.1.4 后,TiCDC 稳定性问题也得到彻底解决,研发和 DBA 睡觉非常踏实;

TiDB 大版本升级,使用 TiUP 仅一条命令即可完成,滚动的方式,过程中业务也很平滑,深得 DBA 喜爱

Dmall OS数字化零售TiDB应用简介-冯光普-page-007.jpgDmall OS数字化零售TiDB应用简介-冯光普-page-008.jpg

当前各行业数字化转型,将领域对象、流程、场景数字化,实现实时在线、高效协同、智能决策,垂直领域的 SaaS 解决方案不断涌现,它们在助力企业降本增效的同时,在数据方面也面临以下技术挑战:



  1. 数据持续快速增长,对于 MySQL 等开源单机数据库,达到容量上限需引入分库分表方案,比如 Sharding-JDBC,这类方案虽然逻辑上透明,但使用后 SQL 能力受限,实际很难执行跨节点 SQL;

  2. 实时商业洞察,数据规模大且产生速度快,对 AP 也提出了挑战,T+1 的方式已经难以满足商业洞察和决策的需求了,比如:商家营销活动的执行效果分析,如果依赖 ETL 抽数+离线计算的技术方案,就无法在活动进行中及时优化营销策略,提升有限资源的回报率;

  3. 更低的成本,不仅是资源层面的存储成本,计算成本,也包括架构及维护成本,弹性可扩展的云原生架构是未来的发展趋势;

Dmall OS数字化零售TiDB应用简介-冯光普-page-006.jpg

核心业务场景支撑

TiDB 在多点 DMALL 的典型应用场景,简单归纳,主要有以下三类:



  1. 海量流水类存储,使用 TiDB 直接替换了 MySQL,多并发批量写的方式,充分发挥 TiDB 高吞吐的优势,典型场景:App 推送记录,短信发送记录,单次营销活动产生的记录可达千万规模,从 MySQL 切换到 TiDB 后,DBA 就告别了容量焦虑,不用频繁归档历史数据,且 RocksDB 引擎相对 InnoDB 引擎有 3~10 的压缩优势,成本比使用 MySQL 更低;

Dmall OS数字化零售TiDB应用简介-冯光普-page-009.jpg



  1. 冷热分离全量存储,对于响应时间敏感,同时数据持续快速增长的在线业务,采用读写分离架构,将近期热数据存储在 MySQL,提供高并发低延迟的在线读写,同时实时同步到 TiDB,保存全量数据,提供历史快照查询及统计分析,支持业务数据变更溯源。典型场景:商品调价、库存变更,数据量超过了单机 MySQL 容量,且持续增长,基于自研的 DRC-TiDB 组件(它可过滤源端 MySQL 归档 DELETE 事件,同步 MySQL 数据到 TiDB),避免了数据增长超过 MySQL 单机容量后水平拆分的技术复杂度;

Dmall OS数字化零售TiDB应用简介-冯光普-page-010.jpg



  1. 多源聚合存储及分析,中台思想及微服务技术架构,实现了在业务域清晰划分下的技术能力复用,及研发高效分工协同,但也导致了数据散落到各个业务子系统中,全链路的业务聚合分析变得困难,在数据规模超过单机存储容量,且要求准实时性分析时,问题更甚。TiDB 透明的水平扩展能力,及 TiFlash 引擎 AP 能力,为这类场景提供了可行方案,典型场景:营销活动分析,聚合同步了多个在线 MySQL 业务库及 MQ 的数据,在 TiDB 中实时计算活动效果,助力运营评估和优化营销策略。

Dmall OS数字化零售TiDB应用简介-冯光普-page-011.jpg

TiDB 价值分析

站在研发的视角,使用 TiDB 的好处:



  1. 更简单的架构,TP 分库分表 + ETL 同步聚合 + AP 分析引擎,这种技术架构,除了技术复杂度、资源成本高、运维困难外,结构/数据一致性难以保证,ETL 同步延迟也是常态。TiDB 提供了另外一种可能:基于内建的 Raft learner 数据复制技术简化了架构,实现 TP 业务和 AP 业务基于同一份数据,避免了一致性和延迟问题。

  2. 实时数据分析能力,基于 TiFlash 列存引擎,及 MPP 计算架构,实时业务数据集上的直接分析得以实现,得益于 TiKV 的水平扩展能力,上游数据的流入和存储几乎无限制,更多的数据,可放大实时数据分析的价值。

  3. 专注业务创新,在充满不确定性的商业竞争中,为快速验证 MVP,业务早期存储选型采用简单易用的 MySQL,但在数据规模达到单机容量上限引入分库分表等技术后,业务研发就需要关注底层存储架构的约束和限制,开发效率降低;甚至权衡性能、稳定性、或成本被迫放弃部分需求特性,业务创新也受到影响,丢失早期竞争优势。TiDB 提供了另外一种可能:在业务进入快速增长阶段,底层存储的扩展对上层业务真正透明,让研发可以专注于业务创新和快速迭代。

Dmall OS数字化零售TiDB应用简介-冯光普-page-012.jpg

站在运维 DBA 视角,使用 TiDB 的好处:



  1. 云原生红利,TiDB 符合云原生架构理念,不论计算层,还是存储层,加机器即扩容,可按需、弹性、近乎无限扩展,相较于 MySQL 分库分表方案的技术复杂、实施门槛高、SQL 能力受限,大规模快速增长数据场景下,运维 TiDB 幸福指数高于运维 MySQL;

  2. MySQL生态友好,TiDB 兼容 MySQL 协议,已建成的平台工具,可直接复用,比如:查询工具,慢 SQL 分析,监控指令等,DBA 可快速上手为研发提供数据库接入服务;

  3. 数据可靠性高,MySQL 需要依赖外部 HA 组件实现故障切换,除部署配置复杂外,还难以彻底避免脑裂问题,TiDB 内部实现了基于 Raft 的数据同步和故障切换,failover 高效可靠,数据强一致保证,DBA 几乎没有心智负担;

Dmall OS数字化零售TiDB应用简介-冯光普-page-013.jpg

在成本方面,TiDB 一直有很多争议:1)组件多,有 PD、TiKV、TiDB 等;2)多副本+高可用,集群部署起步成本较高,会劝退很多用户。根据我们实际使用经验,成本方面的真实情况是:



  • TiKV 的 RocksDB 引擎相对 InnoDB 引擎,有 3~10 倍压缩优势,存储相同规模数据,TiDB 的存储节点数远远低于 MySQL 集群;

  • 随着数据规模增长,只有 TiKV 节点数是随之增长,PD 节点的成本基本不增长,而 TiDB 节点数是与 QPS 相关;

  • 还需考虑引入 sharding 方案后,技术复杂度提升,SQL 能力受限,会带来运维成本的升高,以及开发效率的降低;



  • 在数据规模较小,如在单机 MySQL 容量以内,主从两节点 MySQL 集群,成本是远低于 TiDB 集群的;

  • 当数据规模超过单机 MySQL 容量,需要引入 sharding 方案后,情况会发生变化,使用 TiDB 可能比使用 MySQL 更便宜,主要因为:

Dmall OS数字化零售TiDB应用简介-冯光普-page-014.jpg

实践经验及场景对比

从使用 MySQL 切换到使用 TiDB,需要重点关注和理解分布式架构的优缺点,尤其是存算分离以及分布式事务带来的网络开销,局域网的网络交互延迟,高于单机数据库进程内的数据交互,简单总结一下,结论:



  • TiDB 相比 MySQL 响应更慢;

  • TiDB 相比 MySQL 可输出吞吐更高;

因此,建议采用多并发、批量读写的方式,以发挥 TiDB 的优势。

Dmall OS数字化零售TiDB应用简介-冯光普-page-015.jpg

在数据规模小,要求低延迟的 TP 业务场景中,MySQL 更加合适,而在数据规模远超单机容量、持续快速增长、对响应延迟不那么敏感的 HTAP 业务场景中,使用 TiDB 更加合适。

总结



  • TiDB 基于云原生理念,采用算存分离架构,可以按需、弹性、近乎无限的水平扩展;

  • 基于 TiDB 的 HTAP 能力,可实现同时支撑 TP 业务和 AP 业务的一体化架构,综合成本低;

  • TiDB 与 MySQL 相辅相成,生态友好,是优秀的面向数据快速增长的理想选择。


推荐阅读
  • 智能制造数据综合分析与应用解决方案
    在智能制造领域,生产数据通过先进的采集设备收集,并利用时序数据库或关系型数据库进行高效存储。这些数据经过处理后,通过可视化数据大屏呈现,为生产车间、生产控制中心以及管理层提供实时、精准的信息支持,助力不同应用场景下的决策优化和效率提升。 ... [详细]
  • 在前一篇文章《Hadoop》系列之“踽踽独行”(二)中,我们详细探讨了云计算的核心概念。本章将重点转向物联网技术,全面解析其基本原理、应用场景及未来发展前景。通过深入分析物联网的架构和技术栈,我们将揭示其在智能城市、工业自动化和智能家居等领域的广泛应用潜力。此外,还将讨论物联网面临的挑战,如数据安全和隐私保护等问题,并展望其在未来技术融合中的重要角色。 ... [详细]
  • 从用户转型为开发者:一场思维升级的旅程 | 专访 StarRocks Committer 周威
    从用户转变为开发者,不仅是一次角色的转换,更是一场深刻的思维升级之旅。本次专访中,StarRocks Committer 周威分享了他如何在这一过程中逐步提升技术能力与思维方式,为开源社区贡献自己的力量。 ... [详细]
  • 2016-2017学年《网络安全实战》第三次作业
    2016-2017学年《网络安全实战》第三次作业总结了教材中关于网络信息收集技术的内容。本章主要探讨了网络踩点、网络扫描和网络查点三个关键步骤。其中,网络踩点旨在通过公开渠道收集目标信息,为后续的安全测试奠定基础,而不涉及实际的入侵行为。 ... [详细]
  • 修复一个 Bug 竟耗时两天?真的有那么复杂吗?
    修复一个 Bug 竟然耗费了两天时间?这背后究竟隐藏着怎样的复杂性?本文将深入探讨这个看似简单的 Bug 为何会如此棘手,从代码层面剖析问题根源,并分享解决过程中遇到的技术挑战和心得。 ... [详细]
  • 2021年Java开发实战:当前时间戳转换方法详解与实用网址推荐
    在当前的就业市场中,金九银十过后,金三银四也即将到来。本文将分享一些实用的面试技巧和题目,特别是针对正在寻找新工作机会的Java开发者。作者在准备字节跳动的面试过程中积累了丰富的经验,并成功获得了Offer。文中详细介绍了如何将当前时间戳进行转换的方法,并推荐了一些实用的在线资源,帮助读者更好地应对技术面试。 ... [详细]
  • Cosmos生态系统为何迅速崛起,波卡作为跨链巨头应如何应对挑战?
    Cosmos生态系统为何迅速崛起,波卡作为跨链巨头应如何应对挑战? ... [详细]
  • 本文详细介绍了如何安全地手动卸载Exchange Server 2003,以确保系统的稳定性和数据的完整性。根据微软官方支持文档(https://support.microsoft.com/kb833396/zh-cn),在进行卸载操作前,需要特别注意备份重要数据,并遵循一系列严格的步骤,以避免对现有网络环境造成不利影响。此外,文章还提供了详细的故障排除指南,帮助管理员在遇到问题时能够迅速解决,确保整个卸载过程顺利进行。 ... [详细]
  • 如何高效启动大数据应用之旅?
    在前一篇文章中,我探讨了大数据的定义及其与数据挖掘的区别。本文将重点介绍如何高效启动大数据应用项目,涵盖关键步骤和最佳实践,帮助读者快速踏上大数据之旅。 ... [详细]
  • 揭秘腾讯云CynosDB计算层设计优化背后的不为人知的故事与技术细节
    揭秘腾讯云CynosDB计算层设计优化背后的不为人知的故事与技术细节 ... [详细]
  • MemFireDB 在实时高并发的在线事务处理(OLTP)系统中表现出色。随着移动互联网、电商和社交应用等领域的迅猛发展,传统单机关系型数据库(如MySQL)或分库分表架构已难以满足日益增长的性能需求。MemFireDB 通过其高效的内存计算能力和灵活的分布式架构,能够显著提升系统的响应速度和处理能力,确保在高负载情况下依然保持稳定性和可靠性。此外,MemFireDB 还支持复杂的查询操作和事务管理,适用于需要高性能和低延迟的应用场景。 ... [详细]
  • PHP中元素的计量单位是什么? ... [详细]
  • 本文推荐了六款高效的Java Web应用开发工具,并详细介绍了它们的实用功能。其中,分布式敏捷开发系统架构“zheng”项目,基于Spring、Spring MVC和MyBatis技术栈,提供了完整的分布式敏捷开发解决方案,支持快速构建高性能的企业级应用。此外,该工具还集成了多种中间件和服务,进一步提升了开发效率和系统的可维护性。 ... [详细]
  • ylbtech-进销存管理解决方案:进销存管理,即购销链管理,涵盖企业从采购(进)、库存(存)到销售(销)的全流程动态管控。其中,“进”涉及从市场询价、供应商选择、采购执行直至货物入库及支付流程;“销”则包括产品定价、客户报价、订单处理及销售出库等环节。该解决方案旨在通过信息化手段,提升企业运营效率,优化库存结构,增强市场响应速度。 ... [详细]
  • 本章节从商业数据分析与挖掘的角度,深入探讨了特征工程的关键技术和应用方法,包括数据预处理、特征构建、特征提取及特征选择。详细阐述了如何系统地构建用于分析的结构化数据,为全栈开发提供了坚实的基础。 ... [详细]
author-avatar
mobiledu2502857377
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有