热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Tensorflow学习报告

importtensorflowastfprint(tf.__version__)atf.constant(2.0)print(a)  #声明一个标量常量t_1tf.constan

import tensorflow as tf
print(tf.__version__)
a = tf.constant(2.0)
print(a)

 

 

#声明一个标量常量
t_1 = tf.constant(2)
t_2 = tf.constant(2)
#常量相加
t_add = tf.add(t_1,t_2)
#一个形如一行三列的常量向量可以用如下代码声明
t_3 = tf.constant([4,3,2])
#定义一个形状为[M,N]的全0张量和全1张量
zeros = tf.zeros(shape=[3,3])
Ones= tf.ones(shape=[3,3])

#直接赋值初始化
import tensorflow as tf
#直接给变量赋值初始化
bias1 = tf.Variable(2)
#通过initial_value显示的赋值初始化
bias2 = tf.Variable(initial_value=3.)

#使用初始化函数初始化
a=tf.Variable(tf.zeros([2,1])) #将形状为[2,1]张量初始化为0
b=tf.Variable(tf.zeros_like(a)) #返回一个和给定tensor同样shape的tensor,其中的元素全部置0
c=tf.Variable(tf.ones([2,1])) #初始化为1
d=tf.Variable(tf.ones_like(a)) #将与a一个形状的张量初始化为1
e=tf.fill([2,3],4) #将指定形状的张量初始化为指定数值

import tensorflow as tf
a=tf.constant([[1.0,2.0],[3.0,4.0]])
print(a.shape)
print(a.dtype)
print(a.numpy())

 

 Tensorflow的基础运算操作

import tensorflow as tf
print(tf.add(1,2)) #0维张量相加
print(tf.add([1,2],[3,4])) #一维张量相加
print(tf.matmul([[1,2,3]],[[4],[5],[6]])) #矩阵相乘
print(tf.square(5)) #计算5的平方
print(tf.pow(2,3)) #计算2的3次方
print(tf.square(2)+tf.square(3)) #也支持操作符重载
print(tf.reduce_sum([1,2,3])) #计算数值的和
print(tf.reduce_mean([1,2,3])) #计算均值

 

 

模型搭建时常用的Tensor操作
(1)取最大索引:tf.argmax

 

 (2)扩张维度:tf.expand_dims

 

 (3)张量拼接:tf.concat

x=[[1,2,3],[4,5,61],[7,8,9]]
y=[[2,3,4],[5,6,7],[8,9,10]]
z1=tf.concat([x,y],axis=0) #按照维度0拼接
z2=tf.concat([x,y],axis=1) #按照维度1拼接
print(z1,z2)

 

 (4)形状变换:tf.reshape

 课后作业

import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
train_images.shape
len(train_labels)
train_labels
test_images.shape
len(test_labels)
plt.figure()
plt.imshow(train_images[0])
plt.colorbar()
plt.grid(False)
plt.show()
train_images = train_images / 255.0
test_images = test_images / 255.0
plt.figure(figsize=(10,10))
for i in range(25):
plt.subplot(5,5,i+1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(train_images[i], cmap=plt.cm.binary)
plt.xlabel(class_names[train_labels[i]])
plt.show()
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dense(10)
])
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=10)

 

 

 

 

#模型对于全部 10 个类的预测
def plot_image(i, predictions_array, true_label, img):
predictions_array, true_label, img = predictions_array, true_label[i], img[i]
plt.grid(False)
plt.xticks([])
plt.yticks([])
plt.imshow(img, cmap=plt.cm.binary)
predicted_label = np.argmax(predictions_array)
if predicted_label == true_label:
color = 'blue'
else:
color = 'red'
plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],
100*np.max(predictions_array),
class_names[true_label]),
color=color)
def plot_value_array(i, predictions_array, true_label):
predictions_array, true_label = predictions_array, true_label[i]
plt.grid(False)
plt.xticks(range(10))
plt.yticks([])
thisplot = plt.bar(range(10), predictions_array, color="#777777")
plt.ylim([0, 1])
predicted_label = np.argmax(predictions_array)
thisplot[predicted_label].set_color('red')
thisplot[true_label].set_color('blue')

i = 0
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions[i], test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions[i], test_labels)
plt.show()
i = 12
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions[i], test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions[i], test_labels)
plt.show()

 



推荐阅读
  • 使用多项式拟合分析淘宝双11销售趋势
    根据天猫官方数据,2019年双11成交额达到2684亿元,再次刷新历史记录。本文通过多项式拟合方法,分析并预测未来几年的销售趋势。 ... [详细]
  • 如何将Python与Excel高效结合:常用操作技巧解析
    本文深入探讨了如何将Python与Excel高效结合,涵盖了一系列实用的操作技巧。文章内容详尽,步骤清晰,注重细节处理,旨在帮助读者掌握Python与Excel之间的无缝对接方法,提升数据处理效率。 ... [详细]
  • MicrosoftDeploymentToolkit2010部署培训实验手册V1.0目录实验环境说明3实验环境虚拟机使用信息3注意:4实验手册正文说 ... [详细]
  • 在多线程并发环境中,普通变量的操作往往是线程不安全的。本文通过一个简单的例子,展示了如何使用 AtomicInteger 类及其核心的 CAS 无锁算法来保证线程安全。 ... [详细]
  • [转]doc,ppt,xls文件格式转PDF格式http:blog.csdn.netlee353086articledetails7920355确实好用。需要注意的是#import ... [详细]
  • 本文介绍如何使用 Python 的 DOM 和 SAX 方法解析 XML 文件,并通过示例展示了如何动态创建数据库表和处理大量数据的实时插入。 ... [详细]
  • poj 3352 Road Construction ... [详细]
  • 本文将详细介绍如何在Webpack项目中安装和使用ECharts,包括全量引入和按需引入的方法,并提供一个柱状图的示例。 ... [详细]
  • PTArchiver工作原理详解与应用分析
    PTArchiver工作原理及其应用分析本文详细解析了PTArchiver的工作机制,探讨了其在数据归档和管理中的应用。PTArchiver通过高效的压缩算法和灵活的存储策略,实现了对大规模数据的高效管理和长期保存。文章还介绍了其在企业级数据备份、历史数据迁移等场景中的实际应用案例,为用户提供了实用的操作建议和技术支持。 ... [详细]
  • Python 序列图分割与可视化编程入门教程
    本文介绍了如何使用 Python 进行序列图的快速分割与可视化。通过一个实际案例,详细展示了从需求分析到代码实现的全过程。具体包括如何读取序列图数据、应用分割算法以及利用可视化库生成直观的图表,帮助非编程背景的用户也能轻松上手。 ... [详细]
  • 在对WordPress Duplicator插件0.4.4版本的安全评估中,发现其存在跨站脚本(XSS)攻击漏洞。此漏洞可能被利用进行恶意操作,建议用户及时更新至最新版本以确保系统安全。测试方法仅限于安全研究和教学目的,使用时需自行承担风险。漏洞编号:HTB23162。 ... [详细]
  • 通过使用 `pandas` 库中的 `scatter_matrix` 函数,可以有效地绘制出多个特征之间的两两关系。该函数不仅能够生成散点图矩阵,还能通过参数如 `frame`、`alpha`、`c`、`figsize` 和 `ax` 等进行自定义设置,以满足不同的可视化需求。此外,`diagonal` 参数允许用户选择对角线上的图表类型,例如直方图或密度图,从而提供更多的数据洞察。 ... [详细]
  • 本文详细介绍了批处理技术的基本概念及其在实际应用中的重要性。首先,对简单的批处理内部命令进行了概述,重点讲解了Echo命令的功能,包括如何打开或关闭回显功能以及显示消息。如果没有指定任何参数,Echo命令会显示当前的回显设置。此外,文章还探讨了批处理技术在自动化任务执行、系统管理等领域的广泛应用,为读者提供了丰富的实践案例和技术指导。 ... [详细]
  • 本文介绍了如何使用Java和PDFBox库根据坐标值对PDF文件进行局部切割的方法。 ... [详细]
  • 本文详细介绍了在 CentOS 7 系统中配置 fstab 文件以实现开机自动挂载 NFS 共享目录的方法,并解决了常见的配置失败问题。 ... [详细]
author-avatar
mobiledu2502931517
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有