热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Tensorflow学习报告

importtensorflowastfprint(tf.__version__)atf.constant(2.0)print(a)  #声明一个标量常量t_1tf.constan

import tensorflow as tf
print(tf.__version__)
a = tf.constant(2.0)
print(a)

 

 

#声明一个标量常量
t_1 = tf.constant(2)
t_2 = tf.constant(2)
#常量相加
t_add = tf.add(t_1,t_2)
#一个形如一行三列的常量向量可以用如下代码声明
t_3 = tf.constant([4,3,2])
#定义一个形状为[M,N]的全0张量和全1张量
zeros = tf.zeros(shape=[3,3])
Ones= tf.ones(shape=[3,3])

#直接赋值初始化
import tensorflow as tf
#直接给变量赋值初始化
bias1 = tf.Variable(2)
#通过initial_value显示的赋值初始化
bias2 = tf.Variable(initial_value=3.)

#使用初始化函数初始化
a=tf.Variable(tf.zeros([2,1])) #将形状为[2,1]张量初始化为0
b=tf.Variable(tf.zeros_like(a)) #返回一个和给定tensor同样shape的tensor,其中的元素全部置0
c=tf.Variable(tf.ones([2,1])) #初始化为1
d=tf.Variable(tf.ones_like(a)) #将与a一个形状的张量初始化为1
e=tf.fill([2,3],4) #将指定形状的张量初始化为指定数值

import tensorflow as tf
a=tf.constant([[1.0,2.0],[3.0,4.0]])
print(a.shape)
print(a.dtype)
print(a.numpy())

 

 Tensorflow的基础运算操作

import tensorflow as tf
print(tf.add(1,2)) #0维张量相加
print(tf.add([1,2],[3,4])) #一维张量相加
print(tf.matmul([[1,2,3]],[[4],[5],[6]])) #矩阵相乘
print(tf.square(5)) #计算5的平方
print(tf.pow(2,3)) #计算2的3次方
print(tf.square(2)+tf.square(3)) #也支持操作符重载
print(tf.reduce_sum([1,2,3])) #计算数值的和
print(tf.reduce_mean([1,2,3])) #计算均值

 

 

模型搭建时常用的Tensor操作
(1)取最大索引:tf.argmax

 

 (2)扩张维度:tf.expand_dims

 

 (3)张量拼接:tf.concat

x=[[1,2,3],[4,5,61],[7,8,9]]
y=[[2,3,4],[5,6,7],[8,9,10]]
z1=tf.concat([x,y],axis=0) #按照维度0拼接
z2=tf.concat([x,y],axis=1) #按照维度1拼接
print(z1,z2)

 

 (4)形状变换:tf.reshape

 课后作业

import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
train_images.shape
len(train_labels)
train_labels
test_images.shape
len(test_labels)
plt.figure()
plt.imshow(train_images[0])
plt.colorbar()
plt.grid(False)
plt.show()
train_images = train_images / 255.0
test_images = test_images / 255.0
plt.figure(figsize=(10,10))
for i in range(25):
plt.subplot(5,5,i+1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(train_images[i], cmap=plt.cm.binary)
plt.xlabel(class_names[train_labels[i]])
plt.show()
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dense(10)
])
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=10)

 

 

 

 

#模型对于全部 10 个类的预测
def plot_image(i, predictions_array, true_label, img):
predictions_array, true_label, img = predictions_array, true_label[i], img[i]
plt.grid(False)
plt.xticks([])
plt.yticks([])
plt.imshow(img, cmap=plt.cm.binary)
predicted_label = np.argmax(predictions_array)
if predicted_label == true_label:
color = 'blue'
else:
color = 'red'
plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],
100*np.max(predictions_array),
class_names[true_label]),
color=color)
def plot_value_array(i, predictions_array, true_label):
predictions_array, true_label = predictions_array, true_label[i]
plt.grid(False)
plt.xticks(range(10))
plt.yticks([])
thisplot = plt.bar(range(10), predictions_array, color="#777777")
plt.ylim([0, 1])
predicted_label = np.argmax(predictions_array)
thisplot[predicted_label].set_color('red')
thisplot[true_label].set_color('blue')

i = 0
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions[i], test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions[i], test_labels)
plt.show()
i = 12
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions[i], test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions[i], test_labels)
plt.show()

 



推荐阅读
  • 本文将介绍如何编写一些有趣的VBScript脚本,这些脚本可以在朋友之间进行无害的恶作剧。通过简单的代码示例,帮助您了解VBScript的基本语法和功能。 ... [详细]
  • 本文深入探讨了 Java 中的 Serializable 接口,解释了其实现机制、用途及注意事项,帮助开发者更好地理解和使用序列化功能。 ... [详细]
  • DNN Community 和 Professional 版本的主要差异
    本文详细解析了 DotNetNuke (DNN) 的两种主要版本:Community 和 Professional。通过对比两者的功能和附加组件,帮助用户选择最适合其需求的版本。 ... [详细]
  • UNP 第9章:主机名与地址转换
    本章探讨了用于在主机名和数值地址之间进行转换的函数,如gethostbyname和gethostbyaddr。此外,还介绍了getservbyname和getservbyport函数,用于在服务器名和端口号之间进行转换。 ... [详细]
  • 尽管使用TensorFlow和PyTorch等成熟框架可以显著降低实现递归神经网络(RNN)的门槛,但对于初学者来说,理解其底层原理至关重要。本文将引导您使用NumPy从头构建一个用于自然语言处理(NLP)的RNN模型。 ... [详细]
  • MySQL索引详解与优化
    本文深入探讨了MySQL中的索引机制,包括索引的基本概念、优势与劣势、分类及其实现原理,并详细介绍了索引的使用场景和优化技巧。通过具体示例,帮助读者更好地理解和应用索引以提升数据库性能。 ... [详细]
  • 本文探讨了《魔兽世界》中红蓝两方阵营在备战阶段的策略与实现方法,通过代码展示了双方如何根据资源和兵种特性进行战士生产。 ... [详细]
  • 深入解析JVM垃圾收集器
    本文基于《深入理解Java虚拟机:JVM高级特性与最佳实践》第二版,详细探讨了JVM中不同类型的垃圾收集器及其工作原理。通过介绍各种垃圾收集器的特性和应用场景,帮助读者更好地理解和优化JVM内存管理。 ... [详细]
  • 本文详细介绍了如何构建一个高效的UI管理系统,集中处理UI页面的打开、关闭、层级管理和页面跳转等问题。通过UIManager统一管理外部切换逻辑,实现功能逻辑分散化和代码复用,支持多人协作开发。 ... [详细]
  • 解读MySQL查询执行计划的详细指南
    本文旨在帮助开发者和数据库管理员深入了解如何解读MySQL查询执行计划。通过详细的解析,您将掌握优化查询性能的关键技巧,了解各种访问类型和额外信息的含义。 ... [详细]
  • 本文探讨了 Objective-C 中的一些重要语法特性,包括 goto 语句、块(block)的使用、访问修饰符以及属性管理等。通过实例代码和详细解释,帮助开发者更好地理解和应用这些特性。 ... [详细]
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 题目Link题目学习link1题目学习link2题目学习link3%%%受益匪浅!-----&# ... [详细]
  • moment 国际化设置中文语言 (全局) 及使用示例 ... [详细]
author-avatar
mobiledu2502931517
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有