热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

TensorFlowGPU的使用

一、TensorFlow设备分配1、设备分配规则IfaTensorFlowoperationhasbothCPUandGPUimplementations,the GPU devi

一、TensorFlow 设备分配


1、设备分配规则

If a TensorFlow operation has both CPU and GPU implementations, the GPU devices will be given priority when the operation is assigned to a device.


2、手动指定设备分配



  • 如果你不想让系统自动为 operation 分配设备, 而是自己手动指定, 可以用 with tf.device 创建一个设备环境, 这个环境下的 operation 都统一运行在指定的设备上.

  • 代码示例如下:

1 # op 在 cpu 上运算
2 with tf.device('/cpu:0'):
3 a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
4 b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
5
6 # op 在 gpu 上运算
7 with tf.device('/device:GPU:2'):
8 a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
9 b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
10
11 # op 在 gpus 上运算
12 for d in ['/device:GPU:2', '/device:GPU:3']:
13 with tf.device(d):
14 a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3])
15 b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2])

二、TensorFlow GPU 配置

1、指定可以被看见的GPU设备

1 import os
2
3 # 默认情况,TF 会占用所有 GPU 的所有内存, 我们可以指定
4 # 只有 GPU0 和 GPU1 这两块卡被看到,从而达到限制其使用所有GPU的目的
5 os.environ['CUDA_VISIBLE_DEVICES'] = '0, 1'
6
7 # 打印 TF 可用的 GPU
8 print os.environ['CUDA_VISIBLE_DEVICES']
9 >>> 0, 1

 2、限定使用显存的比例

1 # 在开启对话session前,先创建一个 tf.ConfigProto() 实例对象
2 # 通过 allow_soft_placement 参数自动将无法放在 GPU 上的操作放回 CPU
3 gpuCOnfig= tf.ConfigProto(allow_soft_placement=True)
4
5 # 限制一个进程使用 60% 的显存
6 gpuConfig.gpu_options.per_process_gpu_memory_fraction = 0.6
7
8 # 把你的配置部署到session
9 with tf.Session(cOnfig=gpuConfig) as sess:
10 pass
11
12 这样,如果你指定的卡的显存是8000M的话,你这个进程只能用4800M。

3、需要多少拿多少

1 # 在开启对话session前,先创建一个 tf.ConfigProto() 实例对象
2 # 通过 allow_soft_placement 参数自动将无法放在 GPU 上的操作放回 CPU
3 gpuCOnfig= tf.ConfigProto(allow_soft_placement=True)
4
5 # 运行时需要多少再给多少
6 gpuConfig.gpu_options.allow_growth = True
7
8 # 把你的配置部署到session
9 with tf.Session(cOnfig=gpuConfig) as sess:
10 pass

  4、GPU 使用总结

1 import os
2 os.environ['CUDA_VISIBLE_DEVICES'] = '0, 1'
3
4 gpuCOnfig= tf.ConfigProto(allow_soft_placement=True)
5 gpuConfig.gpu_options.allow_growth = True
6
7 with tf.Session(cOnfig=gpuConfig) as sess:
8 pass


推荐阅读
  • 本文详细介绍了使用NumPy和TensorFlow实现的逻辑回归算法。通过具体代码示例,解释了数据加载、模型训练及分类预测的过程。 ... [详细]
  • 本文详细介绍如何通过Anaconda 3.5.01快速安装TensorFlow,包括环境配置和具体步骤。 ... [详细]
  • 本文详细介绍了 TensorFlow 的入门实践,特别是使用 MNIST 数据集进行数字识别的项目。文章首先解析了项目文件结构,并解释了各部分的作用,随后逐步讲解了如何通过 TensorFlow 实现基本的神经网络模型。 ... [详细]
  • 本文介绍了一个使用Keras框架构建的卷积神经网络(CNN)实例,主要利用了Keras提供的MNIST数据集以及相关的层,如Dense、Dropout、Activation等,构建了一个具有两层卷积和两层全连接层的CNN模型。 ... [详细]
  • TensorFlow 2.0 中的 Keras 数据归一化实践
    数据预处理是机器学习任务中的关键步骤,特别是在深度学习领域。通过将数据归一化至特定范围,可以在梯度下降过程中实现更快的收敛速度和更高的模型性能。本文探讨了如何使用 TensorFlow 2.0 和 Keras 进行有效的数据归一化。 ... [详细]
  • 本文将深入探讨如何在不依赖第三方库的情况下,使用 React 处理表单输入和验证。我们将介绍一种高效且灵活的方法,涵盖表单提交、输入验证及错误处理等关键功能。 ... [详细]
  • Python处理Word文档的高效技巧
    本文详细介绍了如何使用Python处理Word文档,涵盖从基础操作到高级功能的各种技巧。我们将探讨如何生成文档、定义样式、提取表格数据以及处理超链接和图片等内容。 ... [详细]
  • 本文介绍如何在Spring Boot项目中集成Redis,并通过具体案例展示其配置和使用方法。包括添加依赖、配置连接信息、自定义序列化方式以及实现仓储接口。 ... [详细]
  • 本文介绍如何使用 Angular 6 的 HttpClient 模块来获取 HTTP 响应头,包括代码示例和常见问题的解决方案。 ... [详细]
  • 利用Selenium与ChromeDriver实现豆瓣网页全屏截图
    本文介绍了一种使用Selenium和ChromeDriver结合Python代码,轻松实现对豆瓣网站进行完整页面截图的方法。该方法不仅简单易行,而且解决了新版Selenium不再支持PhantomJS的问题。 ... [详细]
  • Redux入门指南
    本文介绍Redux的基本概念和工作原理,帮助初学者理解如何使用Redux管理应用程序的状态。Redux是一个用于JavaScript应用的状态管理库,特别适用于React项目。 ... [详细]
  • 本文介绍如何从字符串中移除大写、小写、特殊、数字和非数字字符,并提供了多种编程语言的实现示例。 ... [详细]
  • yikesnews第11期:微软Office两个0day和一个提权0day
    点击阅读原文可点击链接根据法国大选被黑客干扰,发送了带漏洞的文档Trumps_Attack_on_Syria_English.docx而此漏洞与ESET&FireEy ... [详细]
  • 探讨ChatGPT在法律和版权方面的潜在风险及影响,分析其作为内容创造工具的合法性和合规性。 ... [详细]
  • 本文介绍如何使用 Java 编程语言来判断一个给定的年份是否为闰年,并提供两种不同的实现方法。 ... [详细]
author-avatar
残伤贱爱
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有