背景
监控是Spark非常重要的一部分。Spark的运行情况是由ListenerBus以及MetricsSystem 来完成的。通过Spark的Metrics系统,我们可以把Spark Metrics的收集到的信息发送到各种各样的Sink,比如HTTP、JMX以及CSV文件。
目前支持的Sink包括:
ConsoleSink
CSVSink
JmxSink
MetricsServlet
GraphiteSink
GangliaSink
有时我们需要实时获取metrics数据通过spark分析展示等需求,这个时候若有个KafkaSink将metrics指标数据实时往kafka发送那就太方便了,故有了这篇博文。
实践
所有的Sink都需要继承Sink这个特质:
private[spark] trait Sink { def start(): Unit def stop(): Unit def report(): Unit}
当该Sink注册到metrics系统中时,会调用start方法进行一些初始化操作,再通过report方式进行真正的输出操作,stop方法可以进行一些连接关闭等操作。直接上代码:
package org.apache.spark.metrics.sink
import java.util.concurrent.TimeUnitimport java.util.{Locale, Properties}
import com.codahale.metrics.MetricRegistryimport org.apache.kafka.clients.producer.KafkaProducerimport org.apache.spark.SecurityManagerimport org.apache.spark.internal.Logging
private[spark] class KafkaSink(val property: Properties, val registry: MetricRegistry, securityMgr: SecurityManager) extends Sink with Logging{val KAFKA_KEY_PERIOD = "period" val KAFKA_DEFAULT_PERIOD = 10val KAFKA_KEY_UNIT = "unit" val KAFKA_DEFAULT_UNIT = "SECONDS"val KAFKA_TOPIC = "topic" val KAFKA_DEFAULT_TOPIC = "kafka-sink-topic"val KAFAK_BROKERS = "kafka-brokers" val KAFAK_DEFAULT_BROKERS = "XXX:9092"val TOPIC = Option(property.getProperty(KAFKA_TOPIC)).getOrElse(KAFKA_DEFAULT_TOPIC) val BROKERS = Option(property.getProperty(KAFAK_BROKERS)).getOrElse(throw new IllegalStateException("kafka-brokers is null!"))private val kafkaProducerCOnfig= new Properties() kafkaProducerConfig.put("bootstrap.servers",BROKERS) kafkaProducerConfig.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer") kafkaProducerConfig.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer")private val producer = new KafkaProducer[String, String](kafkaProducerConfig)private val reporter: KafkaReporter = KafkaReporter.forRegistry(registry) .topic(TOPIC) .build(producer)val pollPeriod = Option(property.getProperty(KAFKA_KEY_PERIOD)) match { case Some(s) => s.toInt case NOne=> KAFKA_DEFAULT_PERIOD }val pollUnit: TimeUnit = Option(property.getProperty(KAFKA_KEY_UNIT)) match { case Some(s) => TimeUnit.valueOf(s.toUpperCase(Locale.ROOT)) case NOne=> TimeUnit.valueOf(KAFKA_DEFAULT_UNIT) }override def start(): Unit = { log.info("I4 Metrics System KafkaSink Start ......") reporter.start(pollPeriod, pollUnit) }override def stop(): Unit = { log.info("I4 Metrics System KafkaSink Stop ......") reporter.stop() producer.close() }override def report(): Unit = { log.info("I4 Metrics System KafkaSink Report ......") reporter.report() }}
KafkaReporter类:
package org.apache.spark.metrics.sink;import com.alibaba.fastjson.JSONObject;
import com.codahale.metrics.*;
import com.twitter.bijection.Injection;
import com.twitter.bijection.avro.GenericAvroCodecs;
import org.apache.avro.Schema;
import org.apache.avro.generic.GenericData;
import org.apache.avro.generic.GenericRecord;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;import java.util.Map;
import java.util.SortedMap;
import java.util.concurrent.TimeUnit;public class KafkaReporter extends ScheduledReporter {private static final Logger LOGGER = LoggerFactory.getLogger(KafkaReporter.class);public static KafkaReporter.Builder forRegistry(MetricRegistry registry) {return new KafkaReporter.Builder(registry);}private KafkaProducer producer;private Clock clock;private String topic;private KafkaReporter(MetricRegistry registry,TimeUnit rateUnit,TimeUnit durationUnit,MetricFilter filter,Clock clock,String topic,KafkaProducer producer) {super(registry, "kafka-reporter", filter, rateUnit, durationUnit);this.producer = producer;this.topic = topic;this.clock = clock;}@Overridepublic void report(SortedMap gauges, SortedMap counters, SortedMap histograms, SortedMap meters, SortedMap timers) {final long timestamp = TimeUnit.MILLISECONDS.toSeconds(clock.getTime());// Gaugefor (Map.Entry entry : gauges.entrySet()) {reportGauge(timestamp,entry.getKey(), entry.getValue());}// Histogram
// for (Map.Entry entry : histograms.entrySet()) {
// reportHistogram(timestamp, entry.getKey(), entry.getValue());
// }}private void reportGauge(long timestamp, String name, Gauge gauge) {report(timestamp, name, gauge.getValue());}private void reportHistogram(long timestamp, String name, Histogram histogram) {final Snapshot snapshot = histogram.getSnapshot();report(timestamp, name, snapshot.getMax());}private void report(long timestamp, String name, Object values) {JSONObject jsOnObject= new JSONObject();jsonObject.put("name",name);jsonObject.put("timestamp",timestamp);jsonObject.put("value",values);producer.send(new ProducerRecord(topic,name, jsonObject.toJSONString()));}public static class Builder {private final MetricRegistry registry;private TimeUnit rateUnit;private TimeUnit durationUnit;private MetricFilter filter;private Clock clock;private String topic;private Builder(MetricRegistry registry) {this.registry = registry;this.rateUnit = TimeUnit.SECONDS;this.duratiOnUnit= TimeUnit.MILLISECONDS;this.filter = MetricFilter.ALL;this.clock = Clock.defaultClock();}/*** Convert rates to the given time unit.** @param rateUnit a unit of time* @return {@code this}*/public KafkaReporter.Builder convertRatesTo(TimeUnit rateUnit) {this.rateUnit = rateUnit;return this;}/*** Convert durations to the given time unit.** @param durationUnit a unit of time* @return {@code this}*/public KafkaReporter.Builder convertDurationsTo(TimeUnit durationUnit) {this.duratiOnUnit= durationUnit;return this;}/*** Use the given {@link Clock} instance for the time.** @param clock a {@link Clock} instance* @return {@code this}*/public Builder withClock(Clock clock) {this.clock = clock;return this;}/*** Only report metrics which match the given filter.** @param filter a {@link MetricFilter}* @return {@code this}*/public KafkaReporter.Builder filter(MetricFilter filter) {this.filter = filter;return this;}/*** Only report metrics which match the given filter.** @param topic a* @return {@code this}*/public KafkaReporter.Builder topic(String topic) {this.topic = topic;return this;}/*** Builds a {@link KafkaReporter} with the given properties, writing {@code .csv} files to the* given directory.** @return a {@link KafkaReporter}*/public KafkaReporter build(KafkaProducer producer) {return new KafkaReporter(registry,rateUnit,durationUnit,filter,clock,topic,producer);}}
}
其中的report方法就是获取各种类型指标,并进行对应的输出操作的时机。
如何使用
可在配置文件或者程序中设定需要注册的sink,并带上对应的参数即可:
spark.metrics.conf.*.sink.kafka.class=org.apache.spark.metrics.sink.KafkaSinkspark.metrics.conf.*.sink.kafka.kafka-brokers=XXX:9092
原文:https://www.jianshu.com/p/cee005368b61