作者:AdrianFree覀 | 来源:互联网 | 2023-09-08 01:21
ExecutorBackend
很简单的接口
package org.apache.spark.executor
/**
* A pluggable interface used by the Executor to send updates to the cluster scheduler.
*/
private[spark] trait ExecutorBackend {
def statusUpdate(taskId: Long, state: TaskState, data: ByteBuffer)
}
StandaloneExecutorBackend
维护executor, 并负责注册executor以及executor和driver之间的通信
private[spark] class StandaloneExecutorBackend(
driverUrl: String,
executorId: String,
hostPort: String,
cores: Int)
extends Actor
with ExecutorBackend
with Logging {
var executor: Executor = null
var driver: ActorRef = null
override def preStart() {
logInfo("Connecting to driver: " + driverUrl)
driver = context.actorFor(driverUrl) // 创建driver actor ref, 以便于和driver通信
driver ! RegisterExecutor(executorId, hostPort, cores) // 向driver注册executor
}
override def receive = {
case RegisteredExecutor(sparkProperties) =>
logInfo("Successfully registered with driver")
// Make this host instead of hostPort ?
executor = new Executor(executorId, Utils.parseHostPort(hostPort)._1, sparkProperties) // 当注册成功后, 创建Executor
case RegisterExecutorFailed(message) =>
logError("Slave registration failed: " + message)
System.exit(1)
case LaunchTask(taskDesc) =>
logInfo("Got assigned task " + taskDesc.taskId)
if (executor == null) {
logError("Received launchTask but executor was null")
System.exit(1)
} else {
executor.launchTask(this, taskDesc.taskId, taskDesc.serializedTask) // 调用executor.launchTask,启动task
}
case Terminated(_) | RemoteClientDisconnected(_, _) | RemoteClientShutdown(_, _) =>
logError("Driver terminated or disconnected! Shutting down.")
System.exit(1)
}
override def statusUpdate(taskId: Long, state: TaskState, data: ByteBuffer) {
driver ! StatusUpdate(executorId, taskId, state, data) // 当task状态变化时, 报告给driver actor
}
}
Executor
对于Executor, 维护一个threadPool, 可以run多个task, 取决于core的个数
所以对于launchTask, 就是在threadPool中挑个thread去run TaskRunner
private[spark] class Executor(
executorId: String,
slaveHostname: String,
properties: Seq[(String, String)])
extends Logging
{
// Initialize Spark environment (using system properties read above)
val env = SparkEnv.createFromSystemProperties(executorId, slaveHostname, 0, false, false)
SparkEnv.set(env)
// Start worker thread pool
val threadPool = new ThreadPoolExecutor(
1, 128, 600, TimeUnit.SECONDS, new SynchronousQueue[Runnable])
def launchTask(context: ExecutorBackend, taskId: Long, serializedTask: ByteBuffer) {
threadPool.execute(new TaskRunner(context, taskId, serializedTask))
}
}
TaskRunner
class TaskRunner(context: ExecutorBackend, taskId: Long, serializedTask: ByteBuffer)
extends Runnable {
override def run() {
try {
SparkEnv.set(env)
Accumulators.clear()
val (taskFiles, taskJars, taskBytes) = Task.deserializeWithDependencies(serializedTask) // 反序列化
updateDependencies(taskFiles, taskJars)
val task = ser.deserialize[Task[Any]](taskBytes, Thread.currentThread.getContextClassLoader) // 反序列化
attemptedTask = Some(task)
logInfo("Its epoch is " + task.epoch)
env.mapOutputTracker.updateEpoch(task.epoch)
taskStart = System.currentTimeMillis()
val value = task.run(taskId.toInt) // 调用task.run执行真正的逻辑
val taskFinish = System.currentTimeMillis()
val accumUpdates = Accumulators.values
val result = new TaskResult(value, accumUpdates, task.metrics.getOrElse(null)) // 生成TaskResult
val serializedResult = ser.serialize(result) // 将TaskResult序列化
logInfo("Serialized size of result for " + taskId + " is " + serializedResult.limit)
context.statusUpdate(taskId, TaskState.FINISHED, serializedResult) // 将任务完成和taskresult,通过statusUpdate报告给driver
logInfo("Finished task ID " + taskId)
} catch { // 处理各种fail, 同样也要用statusUpdate event通知driver
case ffe: FetchFailedException => {
val reason = ffe.toTaskEndReason
context.statusUpdate(taskId, TaskState.FAILED, ser.serialize(reason))
}
case t: Throwable => {
val serviceTime = (System.currentTimeMillis() - taskStart).toInt
val metrics = attemptedTask.flatMap(t => t.metrics)
for (m <- metrics) {
m.executorRunTime = serviceTime
m.jvmGCTime = getTotalGCTime - startGCTime
}
val reason = ExceptionFailure(t.getClass.getName, t.toString, t.getStackTrace, metrics)
context.statusUpdate(taskId, TaskState.FAILED, ser.serialize(reason))
// TODO: Should we exit the whole executor here? On the one hand, the failed task may
// have left some weird state around depending on when the exception was thrown, but on
// the other hand, maybe we could detect that when future tasks fail and exit then.
logError("Exception in task ID " + taskId, t)
//System.exit(1)
}
}
}
}