热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

SparkMLlib之BasicStatistics

SparkMLlib提供了一些基本的统计学的算法,下面主要说明一下:1、Summarystatistics对于RDD[Vector]类型,SparkMLlib提供了colStats

Spark MLlib提供了一些基本的统计学的算法,下面主要说明一下:

1、Summary statistics

对于RDD[Vector]类型,Spark MLlib提供了colStats的统计方法,该方法返回一个MultivariateStatisticalSummary的实例。他封装了列的最大值,最小值,均值、方差、总数。如下所示:

val cOnf= new SparkConf().setAppName("Simple Application").setMaster("yarn-cluster")
val sc = new SparkContext(conf)
val observatiOns= sc.textFile("/user/liujiyu/spark/mldata1.txt")
.map(_.split(‘ ‘) // 转换为RDD[Array[String]]类型
.map(_.toDouble)) // 转换为RDD[Array[Double]]类型
.map(line => Vectors.dense(line)) //转换为RDD[Vector]类型
// Compute column summary statistics.
val summary: MultivariateStatisticalSummary = Statistics.colStats(observations)
println(summary.mean) // a dense vector containing the mean value for each column
println(summary.variance) // column-wise variance
println(summary.numNonzeros) // number of nonzeros in each column

2、Correlations(相关性)

计算两个序列的相关性,提供了计算Pearson’s and Spearman’s correlation.如下所示:

val cOnf= new SparkConf().setAppName("Simple Application").setMaster("yarn-cluster")
val sc = new SparkContext(conf)
val observatiOns= sc.textFile("/user/liujiyu/spark/mldata1.txt")
val data1 = Array(1.0, 2.0, 3.0, 4.0, 5.0)
val data2 = Array(1.0, 2.0, 3.0, 4.0, 5.0)
val distData1: RDD[Double] = sc.parallelize(data1)
val distData2: RDD[Double] = sc.parallelize(data2) // must have the same number of partitions and cardinality as seriesX
// compute the correlation using Pearson‘s method. Enter "spearman" for Spearman‘s method. If a
// method is not specified, Pearson‘s method will be used by default.
val correlation: Double = Statistics.corr(distData1, distData2, "pearson")
val data: RDD[Vector] = observations // note that each Vector is a row and not a column
// calculate the correlation matrix using Pearson‘s method. Use "spearman" for Spearman‘s method.
// If a method is not specified, Pearson‘s method will be used by default.
val correlMatrix: Matrix = Statistics.corr(data, "pearson")

 


推荐阅读
  • 本题要求在一组数中反复取出两个数相加,并将结果放回数组中,最终求出最小的总加法代价。这是一个经典的哈夫曼编码问题,利用贪心算法可以有效地解决。 ... [详细]
  • 探讨 HDU 1536 题目,即 S-Nim 游戏的博弈策略。通过 SG 函数分析游戏胜负的关键,并介绍如何编程实现解决方案。 ... [详细]
  • 深入解析动态代理模式:23种设计模式之三
    在设计模式中,动态代理模式是应用最为广泛的一种代理模式。它允许我们在运行时动态创建代理对象,并在调用方法时进行增强处理。本文将详细介绍动态代理的实现机制及其应用场景。 ... [详细]
  • 本文介绍了如何通过Java代码计算一个整数的位数,并展示了多个基础编程示例,包括求和、平均分计算、条件判断等。 ... [详细]
  • Python 内存管理机制详解
    本文深入探讨了Python的内存管理机制,涵盖了垃圾回收、引用计数和内存池机制。通过具体示例和专业解释,帮助读者理解Python如何高效地管理和释放内存资源。 ... [详细]
  • 实用正则表达式有哪些
    小编给大家分享一下实用正则表达式有哪些,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下 ... [详细]
  • 本文详细探讨了Android Activity中View的绘制流程和动画机制,包括Activity的生命周期、View的测量、布局和绘制过程以及动画对View的影响。通过实验验证,澄清了一些常见的误解,并提供了代码示例和执行结果。 ... [详细]
  • 在 Android 开发中,通过 Intent 启动 Activity 或 Service 时,可以使用 putExtra 方法传递数据。接收方可以通过 getIntent().getExtras() 获取这些数据。本文将介绍如何使用 RoboGuice 框架简化这一过程,特别是 @InjectExtra 注解的使用。 ... [详细]
  • 深入解析 Android IPC 中的 Messenger 机制
    本文详细介绍了 Android 中基于消息传递的进程间通信(IPC)机制——Messenger。通过实例和源码分析,帮助开发者更好地理解和使用这一高效的通信工具。 ... [详细]
  • 本文探讨了如何在Classic ASP中实现与PHP的hash_hmac('SHA256', $message, pack('H*', $secret))函数等效的哈希生成方法。通过分析不同实现方式及其产生的差异,提供了一种使用Microsoft .NET Framework的解决方案。 ... [详细]
  • Java多线程实现:从1到100分段求和并汇总结果
    本文介绍如何使用Java编写一个程序,通过10个线程分别计算不同区间的和,并最终汇总所有线程的结果。每个线程负责计算一段连续的整数之和,最后将所有线程的结果相加。 ... [详细]
  • 本篇文章介绍如何将两个分别表示整数的链表进行相加,并生成一个新的链表。每个链表节点包含0到9的数值,如9-3-7和6-3相加得到1-0-0-0。通过反向处理链表、逐位相加并处理进位,最终再将结果链表反向,即可完成计算。 ... [详细]
  • 本文将详细探讨 Java 中提供的不可变集合(如 `Collections.unmodifiableXXX`)和同步集合(如 `Collections.synchronizedXXX`)的实现原理及使用方法,帮助开发者更好地理解和应用这些工具。 ... [详细]
  • Ubuntu GamePack:专为游戏爱好者打造的Linux发行版
    随着Linux系统在游戏领域的应用越来越广泛,许多Linux用户开始寻求在自己的系统上畅玩游戏的方法。UALinux,一家致力于推广GNU/Linux使用的乌克兰公司,推出了基于Ubuntu 16.04的Ubuntu GamePack,旨在为Linux用户提供一个游戏友好型的操作环境。 ... [详细]
  • 在Ubuntu 16.04中使用Anaconda安装TensorFlow
    本文详细介绍了如何在Ubuntu 16.04系统上通过Anaconda环境管理工具安装TensorFlow。首先,需要下载并安装Anaconda,然后配置环境变量以确保系统能够识别Anaconda命令。接着,创建一个特定的Python环境用于安装TensorFlow,并通过指定的镜像源加速安装过程。最后,通过一个简单的线性回归示例验证TensorFlow的安装是否成功。 ... [详细]
author-avatar
kenson4930
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有