热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

思想_CNN中减少网络的参数的三个思想

CNN中减少网络的参数的三个思想:1)局部连接(LocalConnectivity)2)权值共享(SharedWeights)

CNN中减少网络的参数的三个思想:

1) 局部连接(Local Connectivity)

2) 权值共享(Shared Weights)

3) 池化(Pooling)


局部连接

  局部连接是相对于全连接来说的。全连接示意图如下:

技术分享

  比如说,输入图像为1000*1000大小,即输入层有1000*1000=10^6维,若隐含层与输入层的数目一样,也有10^6个,则输入层到隐含层的全连接参数个数为10^6 * 10^6=10^12,数目非常之大,基本很难训练。

  一般认为人对外界的认知是从局部到全局的,而图像的空间联系也是局部的像素联系较为紧密,而距离较远的像素相关性则较弱。因而,每个神经元其实没有必要对全局图像进行感知,只需要对局部进行感知,然后在更高层将局部的信息综合起来就得到了全局的信息。网络部分连通的思想,也是受启发于生物学里面的视觉系统结构。视觉皮层的神经元就是局部接受信息的(即这些神经元只响应某些特定区域的刺激)。如下图所示:左图为全连接,右图为局部连接。

技术分享

       在上右图中,假如每个神经元只和10*10个像素值相连,那么权值数据为10^6*100=10^8个参数(在有padding=same,stride=1,即输出输出尺寸相同,相邻两个卷积核距离1个像素的情况下计算得到),减少为原来的千分之一。而那10*10个像素值对应的10*10个参数,其实就相当于卷积操作。

  注:感受野(receptive field),其大小等同于卷积核的大小(比如说5×5)。

权值共享

  通过局部连接处理后,神经元之间的连接个数已经有所减少。可是实际上并没有减少很多,参数数量还是很大。而权值共享就是来解决这个问题的,它能显著降低参数的数量。该如何理解权值共享呢?首先从生物学意义上来看,相邻神经元的活性相似,从而它们可以共享相同的连接权值。其次单从数据特征上来看,我们可以把每个卷积核当作一种特征提取方式,而这种方式与图像等数据的位置无关。这就意味着,对于同一个卷积核,它在一个区域提取到的特征,也能适用于于其他区域。

  在上面的局部连接中,每个神经元都对应100个参数,一共10^6个神经元,如果这10^6个神经元的100个参数都是相等的,那么参数数目就变为100了。由此可见,权值共享可以大大减少网络的参数。

  注:上面说明均是在一个卷积核的情况下。

 池化

  池化一般分为max pooling和average pooling。我们定义池化窗口的大小为sizeX,即下图中红色正方形的边长,定义两个相邻池化窗口的水平位移/竖直位移为stride。一般池化由于每一池化窗口都是不重复的,所以sizeX=stride。最大池化为取窗口中最大的那个值,平均池化为取窗口中所有数的平均值。

技术分享

       如上图所示,为最大池化,其中sizeX=stride=2。

       经过池化层之后,模型参数会减少很多。

 

参考文献:

https://yq.aliyun.com/articles/161164

http://www.cnblogs.com/zf-blog/p/6075286.html

一文读懂卷积神经网络CNN


推荐阅读
  • PyCharm下载与安装指南
    本文详细介绍如何从官方渠道下载并安装PyCharm集成开发环境(IDE),涵盖Windows、macOS和Linux系统,同时提供详细的安装步骤及配置建议。 ... [详细]
  • 探讨如何高效使用FastJSON进行JSON数据解析,特别是从复杂嵌套结构中提取特定字段值的方法。 ... [详细]
  • QBlog开源博客系统:Page_Load生命周期与参数传递优化(第四部分)
    本教程将深入探讨QBlog开源博客系统的Page_Load生命周期,并介绍一种简洁的参数传递重构方法。通过视频演示和详细讲解,帮助开发者更好地理解和应用这些技术。 ... [详细]
  • 资源推荐 | TensorFlow官方中文教程助力英语非母语者学习
    来源:机器之心。本文详细介绍了TensorFlow官方提供的中文版教程和指南,帮助开发者更好地理解和应用这一强大的开源机器学习平台。 ... [详细]
  • 本文详细介绍了如何在Linux系统上安装和配置Smokeping,以实现对网络链路质量的实时监控。通过详细的步骤和必要的依赖包安装,确保用户能够顺利完成部署并优化其网络性能监控。 ... [详细]
  • 本文介绍如何在 Android 中通过代码模拟用户的点击和滑动操作,包括参数说明、事件生成及处理逻辑。详细解析了视图(View)对象、坐标偏移量以及不同类型的滑动方式。 ... [详细]
  • 2023 ARM嵌入式系统全国技术巡讲旨在分享ARM公司在半导体知识产权(IP)领域的最新进展。作为全球领先的IP提供商,ARM在嵌入式处理器市场占据主导地位,其产品广泛应用于90%以上的嵌入式设备中。此次巡讲将邀请来自ARM、飞思卡尔以及华清远见教育集团的行业专家,共同探讨当前嵌入式系统的前沿技术和应用。 ... [详细]
  • 本文详细记录了在基于Debian的Deepin 20操作系统上安装MySQL 5.7的具体步骤,包括软件包的选择、依赖项的处理及远程访问权限的配置。 ... [详细]
  • Navicat Premium 15 安装指南及数据库连接配置
    本文详细介绍 Navicat Premium 15 的安装步骤及其对多种数据库(如 MySQL 和 Oracle)的支持,帮助用户顺利完成软件的安装与激活。 ... [详细]
  • Explore how Matterverse is redefining the metaverse experience, creating immersive and meaningful virtual environments that foster genuine connections and economic opportunities. ... [详细]
  • 技术分享:从动态网站提取站点密钥的解决方案
    本文探讨了如何从动态网站中提取站点密钥,特别是针对验证码(reCAPTCHA)的处理方法。通过结合Selenium和requests库,提供了详细的代码示例和优化建议。 ... [详细]
  • 本文探讨了如何像程序员一样思考,强调了将复杂问题分解为更小模块的重要性,并讨论了如何通过妥善管理和复用已有代码来提高编程效率。 ... [详细]
  • 火星商店问题:线段树分治与持久化Trie树的应用
    本题涉及编号为1至n的火星商店,每个商店有一个永久商品价值v。操作包括每天在指定商店增加一个新商品,以及查询某段时间内某些商店中所有商品(含永久商品)与给定密码值的最大异或结果。通过线段树分治和持久化Trie树来高效解决此问题。 ... [详细]
  • Java 中的 BigDecimal pow()方法,示例 ... [详细]
  • 本文总结了汇编语言中第五至第八章的关键知识点,涵盖间接寻址、指令格式、安全编程空间、逻辑运算指令及数据重复定义等内容。通过详细解析这些内容,帮助读者更好地理解和应用汇编语言的高级特性。 ... [详细]
author-avatar
彩之乐
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有