热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

数字图像处理——第一章绪论

数字图像处理——第1章绪论写在前面1.1图像、像素及数字图像处理1.2数字图像处理基本步骤1.3图像处理的目的、任务与特点1.3.1图像处理的目的1.3.2图像处理的任务1.3.3


数字图像处理——第1章 绪论

    • 写在前面
    • 1.1 图像、像素及数字图像处理
    • 1.2 数字图像处理基本步骤
    • 1.3 图像处理的目的、任务与特点
      • 1.3.1 图像处理的目的
      • 1.3.2 图像处理的任务
      • 1.3.3 数字图像处理的特点
    • 1.4 数字图像处理的应用


写在前面


最近开始计算机视觉的基础课程学习,从最先的数字图像处理开始,再到后面的Python 计算机视觉、机器学习等课程。写在博客记录下整个学习过程,也方便后续自己学习。这些课程都是自己边学边实践的记录笔记,如有不足之处,还请大家批评指正。

1.1 图像、像素及数字图像处理

数字图像:是用一个数字阵列来表达客观物体的图像,是一个离散采样点的集合,每个点具有其各自的属性。课本中定义为一个图像可定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,而在任何一对空间坐标(x,y)处的幅值f称为该点处的强度或灰度。当x,y和灰度值f是有限的离散函数时,我们称该图像为数字图像。其实在之后的图像处理中,接触的便较多的灰度图像和彩色图像。一张图片肉眼看就是一张图片,但对于计算机来说,他看到的就是矩阵,就是一大堆数字,比如一张彩色的图片,对于计算机来说,就是具有三个通道(RGB)的矩阵。图像是像素值的矩阵。

灰度图像:每个像素的亮度用一个数值来表示,通常数值范围在0到255之间,0表示黑、255表 示白,其它值表示处于黑白之间的灰度。例如下图很常见的mnist数据集。


cYDLYd.md.jpg

也可使用PIL库看到其为灰度图(mode=L)且分辨率为28×28


cUimAs.png

彩色图像:可以用红、绿、蓝(R、G、B)三元组的二维矩阵来表示。通常,三元组的每个数值也是在0到255之间,之后在深度学习的图像处理过程中常常看见tensor,例如PyTorch其维度格式是[batch, channel, height, width],其中batch之后再说,channel就是三通道,代表着RGB,如下图所示。


cYjB1s.jpg

当然也可使用PIL库看到其为彩色图(mode=RGB)且分辨率为495×315

在这里插入图片描述

数字图像处理:是用计算机或者数字设备对图像进行加工、分析,以达到所需要的效果技术。目前所说的图像处理通俗指数字图像处理。


1.2 数字图像处理基本步骤

ctSZgH.md.jpg

如上述图所示:

图像获取是数字图像处理的第一步。通常,图像获取阶段包括图像预处理,譬如图像缩放等。

图像增强是对一幅图像进行某种操作,使其结果在特定应用中比原始图像更适合进行处理。特定一词在这里很重要,因为一开始增强技术就建立在面向问题的基础之上。例如,对于增强x射线图像十分有用的方法,对于增强电磁波谱中红外波段获取的卫星图像可能就不是最好的方法。

图像复原也是改进图像外观的一个处理领域。然而,与图像增强不同,图像增强是主观的,而图像复原是客观的。

彩色图像中的彩色也是提取图像中感兴趣区域的基础。

小波是以不同分辨率来描述图像的基础。

压缩指的是减少图像存储量或降低传输图像带宽的处理。

形态学处理涉及提取图像分量的工具,这些分量在表示和描述形状方面很有用。

分割过程将一幅图像划分为它的组成部分或目标。通常,自动分割是数字图像处理中最困难的任务之-一。成功地把目标逐-识别出来是一 个艰难的分割过程。另一方面,很弱的 且不稳定的分割算法几乎总是会导致最终失败。通常,分割越准确,识别越成功。

描述又称为特征选择,涉及提取特征,它可得到某些感兴趣的定量信息,或是区分一组目标与其他目标的基础。

识别是基于目标的描述给该目标赋予标志,例如赋予其类别。


1.3 图像处理的目的、任务与特点


1.3.1 图像处理的目的

(1).提高图像的视觉质量以提供人眼主观满意的效果。图像增强、图像的恢复、图像的集合百年换、图像的滤波等处理能够使得受污染的图像得到有效的改善。如下图为经典的去雾算法

ctC4I0.jpg

(2).提取图像中目标的某些特征,以便于计算机分析或机器人识别。例如边缘检测,图像分割、纹理分析常用作模式识别、计算机视觉等高级处理的预处理。如下图为Mask R-CNN算法。

cUiHEj.jpg

(3).信息的可视化。许多信息(如温度场、流速场,生物组织内部等)并非可视,但是转化为视觉形式后可以充分利用人们对可视模式快速识别的自然能力、更便于观察分析与研究。


ctVf6f.jpg


1.3.2 图像处理的任务

图像处理的任务是获取客观世界的景象并转化为数字图像后,进行增强复原重建变换编码压缩分割等处理,从而将一幅图像转化为另一幅具有新的意义的图像。具体任务在之后的章节中都会涉及,在此先有个印象.


cNvbqI.jpg


1.3.3 数字图像处理的特点

(1).处理信息量很大。数字图像处理的信息大多是二维信息,处理信息量很大,因此对计算机的计算速度、存储容量要求较高。此处可联想到GPU,GPU就是图形处理器,我们经常采用GPU进行一些图形计算。

(2).占用频带较宽。与语言信息相比,数字图像处理占用的频带要大几个数量级。如电视图像的带宽约5.6MHz,而语音带宽仅为4kHz左右。所以在成像、传输、存储、处理、显示等各个环节的实现上,技术难度较大,成本亦高。

(3).无法复现全部信息。由于图像是三维景物的二维投影,一幅图象本身不具备复现三维景物的全部几何信息的能力,很显然三维景物背后部分信息在二维图像画面上是反映不出来的。因此,要分析和理解三维景物必须作合适的假定或附加新的测量,例如双目图像或多视点图像。在理解三维景物时需要知识导引,这也是人工智能中正在致力解决的知识工程问题。


1.4 数字图像处理的应用

图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。下面列出几种常见的应用。

(1).航天和航空方面。数字图像处理技术在航天和航空技术方面的应用,除了JPL对月球、火星照片的处理之外,另一方面的应用是在飞机遥感和卫星遥感技术中。例如资源调查,灾害检测,资源勘察,农业规划,城市规划等。举例如常见的航拍目标检测。


cUp40A.jpg

(2).生物医学工程方面。数字图像处理在生物医学工程方面的应用十分广泛,而且很有成效。除了常见的CT技术之外,还有一类是对医用显微图像的处理分析,如红细胞、白细胞分类,染色体分析,癌细胞识别等。此外,在X光肺部图像增晰、超声波图像处理、心电图分析、立体定向放射治疗等医学诊断方面都广泛地应用图像处理技术。


cUF3Gt.jpg

(3).军事、公安方面。在军事方面图像处理和识别主要用于导弹的精确末制导,各种侦察照片的判读,具有图像传输、存储和显示的军事自动化指挥系统,飞机、坦克和军舰模拟训练系统等;公安业务图片的判读分析,指纹识别,人脸识别,不完整图片的复原,以及交通监控、事故分析等。目前已投入运行的高速公路不停车自动收费系统中的车辆和车牌的自动识别都是图像处理技术成功应用的例子。

cUCPUI.jpg

(4).机器人视觉。机器视觉作为智能机器人的重要感觉器官,主要进行三维景物理解和识别,是目前处于研究之中的开放课题。机器视觉主要用于军事侦察、危险环境的自主机器人,邮政、医院和家庭服务的智能机器人,装配线工件识别、定位,太空机器人的自动操作等。


cUC7QS.jpg


推荐阅读
  • 本文介绍了如何使用 Google Colab 的免费 GPU 资源进行深度学习应用开发。Google Colab 是一个无需配置即可使用的云端 Jupyter 笔记本环境,支持多种深度学习框架,并且提供免费的 GPU 计算资源。 ... [详细]
  • 能够感知你情绪状态的智能机器人即将问世 | 科技前沿观察
    本周科技前沿报道了多项重要进展,包括美国多所高校在机器人技术和自动驾驶领域的最新研究成果,以及硅谷大型企业在智能硬件和深度学习技术上的突破性进展。特别值得一提的是,一款能够感知用户情绪状态的智能机器人即将问世,为未来的人机交互带来了全新的可能性。 ... [详细]
  • 2019年斯坦福大学CS224n课程笔记:深度学习在自然语言处理中的应用——Word2Vec与GloVe模型解析
    本文详细解析了2019年斯坦福大学CS224n课程中关于深度学习在自然语言处理(NLP)领域的应用,重点探讨了Word2Vec和GloVe两种词嵌入模型的原理与实现方法。通过具体案例分析,深入阐述了这两种模型在提升NLP任务性能方面的优势与应用场景。 ... [详细]
  • 5.Numpy 索引(一维索引/二维索引)
    本文内容是根据莫烦Python网站的视频整理的笔记,笔记中对代码的注释更加清晰明了,同时根据所有笔记还整理了精简版的思维导图,可在此专栏查看,想观看视频可直接去他的网 ... [详细]
  • 本文介绍如何使用OpenCV和线性支持向量机(SVM)模型来开发一个简单的人脸识别系统,特别关注在只有一个用户数据集时的处理方法。 ... [详细]
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
  • 深入解析监督学习的核心概念与应用
    本文深入探讨了监督学习的基本原理及其广泛应用。监督学习作为机器学习的重要分支,通过利用带有标签的训练数据,能够有效构建预测模型。文章详细解析了监督学习的关键概念,如特征选择、模型评估和过拟合问题,并介绍了其在图像识别、自然语言处理等领域的实际应用。 ... [详细]
  • 【图像分类实战】利用DenseNet在PyTorch中实现秃头识别
    本文详细介绍了如何使用DenseNet模型在PyTorch框架下实现秃头识别。首先,文章概述了项目所需的库和全局参数设置。接着,对图像进行预处理并读取数据集。随后,构建并配置DenseNet模型,设置训练和验证流程。最后,通过测试阶段验证模型性能,并提供了完整的代码实现。本文不仅涵盖了技术细节,还提供了实用的操作指南,适合初学者和有经验的研究人员参考。 ... [详细]
  • 通过使用CIFAR-10数据集,本文详细介绍了如何快速掌握Mixup数据增强技术,并展示了该方法在图像分类任务中的显著效果。实验结果表明,Mixup能够有效提高模型的泛化能力和分类精度,为图像识别领域的研究提供了有价值的参考。 ... [详细]
  • Python与R语言在功能和应用场景上各有优势。尽管R语言在统计分析和数据可视化方面具有更强的专业性,但Python作为一种通用编程语言,适用于更广泛的领域,包括Web开发、自动化脚本和机器学习等。对于初学者而言,Python的学习曲线更为平缓,上手更加容易。此外,Python拥有庞大的社区支持和丰富的第三方库,使其在实际应用中更具灵活性和扩展性。 ... [详细]
  • 当前,众多初创企业对全栈工程师的需求日益增长,但市场中却存在大量所谓的“伪全栈工程师”,尤其是那些仅掌握了Node.js技能的前端开发人员。本文旨在深入探讨全栈工程师在现代技术生态中的真实角色与价值,澄清对这一角色的误解,并强调真正的全栈工程师应具备全面的技术栈和综合解决问题的能力。 ... [详细]
  • 表面缺陷检测数据集综述及GitHub开源项目推荐
    本文综述了表面缺陷检测领域的数据集,并推荐了多个GitHub上的开源项目。通过对现有文献和数据集的系统整理,为研究人员提供了全面的资源参考,有助于推动该领域的发展和技术进步。 ... [详细]
  • 不用蘑菇,不拾金币,我通过强化学习成功通关29关马里奥,创造全新纪录
    《超级马里奥兄弟》由任天堂于1985年首次发布,是一款经典的横版过关游戏,至今已在多个平台上售出超过5亿套。该游戏不仅勾起了许多玩家的童年回忆,也成为强化学习领域的热门研究对象。近日,通过先进的强化学习技术,研究人员成功让AI通关了29关,创造了新的纪录。这一成就不仅展示了强化学习在游戏领域的潜力,也为未来的人工智能应用提供了宝贵的经验。 ... [详细]
  • 本文提供了PyTorch框架中常用的预训练模型的下载链接及详细使用指南,涵盖ResNet、Inception、DenseNet、AlexNet、VGGNet等六大分类模型。每种模型的预训练参数均经过精心调优,适用于多种计算机视觉任务。文章不仅介绍了模型的下载方式,还详细说明了如何在实际项目中高效地加载和使用这些模型,为开发者提供全面的技术支持。 ... [详细]
  • 谷歌工程师:TensorFlow已重获新生;网友:我还是用PyTorch
    乾明发自凹非寺量子位报道|公众号QbitAI道友留步!TensorFlow已重获新生。在“PyTorch真香”的潮流中,有人站出来为TensorFlow说话了。这次来自谷歌的工程师 ... [详细]
author-avatar
lovely蓝衣13
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有