作者:Horizonfeng_121 | 来源:互联网 | 2023-06-19 13:22
数据结构逻辑结构:集合结构,线性结构,树形结构,圆形结构物理结构:顺序存储结构、链式存储结构顺序表:数据元素本身连续存储,每个元素所占的存储单元大小固定相同。元素存储的物理地址(实
数据结构
逻辑结构:集合结构,线性结构,树形结构,圆形结构
物理结构:顺序存储结构、链式存储结构
顺序表:数据元素本身连续存储,每个元素所占的存储单元大小固定相同。
元素存储的物理地址(实际内存地址)可以通过存储区的起始地址Loc (e0)加上逻辑地址(第i个元素)与存储单元大小(c)的乘积计算而得,即:
Loc(ei) = Loc(e0) + c*i
故,访问指定元素时无需从头遍历,通过计算便可获得对应地址,其时间复杂度为O(1)。
容量与元素个数。
顺序表结构:一体,分离
链表:
链表(Linked list)是一种常见的基础数据结构,是一种线性表,但是不像顺序表一样连续存储数据,而是在每一个节点(数据存储单元)里存放下一个节点的位置信息(即地址)。
单链表:
表元素域 | 下一个节点链接域 ;首节点称为头变量或者表头指针。
如何实现对单链表的操作?
- is_empty() 链表是否为空
- length() 链表长度
- travel() 遍历整个链表
- add(item) 链表头部添加元素
- append(item) 链表尾部添加元素
- insert(pos, item) 指定位置添加元素
- remove(item) 删除节点
- search(item) 查找节点是否存在
3-05:单链表的判空、长度、遍历、尾部添加
class singleLinklist(object)
"单链表"
#链表中必须存在某个属性(对象属性),指向头结点。
def __init__(self,node=None):
self._head = node
#下面都是具体的对象方法,不是类方法
#is_empty() 链表是否为空
def is_empty():
self._head == None
pass
#length() 链表长度
def length(self):
"""链表长度"""
# cur初始时指向头节点
cur = self._head
count = 0
# 尾节点指向None,当未到达尾部时
while cur != None:
count += 1
# 将cur后移一个节点
cur = cur.next
return count
#travel() 遍历整个链表
def travel(self):
"""遍历链表"""
cur = self._head
while cur != None:
print (cur.item , end=" ")
cur = cur.next
print ""
pass
3-06:单链表尾部添加和在指定位置添加
头部添加:
def add(self, item):
"""头部添加元素"""
#1.先创建一个保存item值的节点 ,把item封装成一个链表所需要的数据
node = SingleNode(item)
#2.将新节点的链接域next指向头节点,即_head指向的位置
node.next = self._head
#3.将链表的头_head指向新节点
self._head = node
指定位置添加元素:
def insert(self, pos, item):
"""指定位置添加元素"""
# 若指定位置pos为第一个元素之前,则执行头部插入
if pos <= 0:
self.add(item)
# 若指定位置超过链表尾部,则执行尾部插入
elif pos > (self.length()-1):
self.append(item)
# 找到指定位置
else:
node = SingleNode(item)
count = 0
# pre用来指向指定位置pos的前一个位置pos-1,初始从头节点开始移动到指定位置
pre = self._head
while count <(pos-1):
count += 1
pre = pre.next
# 当循环推出后,pre指向pos-1位置,先将新节点node的next指向插入位置的节点
node.next = pre.next
# 将插入位置的前一个节点的next指向新节点
pre.next = node
3-07:单链表查找和删除元素
def search(self,item):
"""链表查找节点是否存在,并返回True或者False"""
cur = self._head
while cur != None:
if cur.item == item:
return True
cur = cur.next
return False
删除元素
def remove(self,item):
"""删除节点"""
cur = self._head
pre = None
while cur != None:
# 找到了指定元素
if cur.item == item:
# 如果第一个就是删除的节点
if not pre:
# 将头指针指向头节点的后一个节点
self._head = cur.next
else:
# 将删除位置前一个节点的next指向删除位置的后一个节点
pre.next = cur.next
break
else:
# 继续按链表后移节点
pre = cur
cur = cur.next
3-08:单链表与顺序表的对比
链表失去了顺序表随机读取的优点,同时链表由于增加了结点的指针域,空间开销比较大,但对存储空间的使用要相对灵活。
class Node(object):
"""节点"""
def __init__(self, item):
self.item = item
self.next = None
class SinCycLinkedlist(object):
"""单向循环链表"""
def __init__(self):
self._head = None
def is_empty(self):
"""判断链表是否为空"""
return self._head == None
def length(self):
"""返回链表的长度"""
# 如果链表为空,返回长度0
if self.is_empty():
return 0
count = 1
cur = self._head
while cur.next != self._head:
count += 1
cur = cur.next
return count
def travel(self):
"""遍历链表"""
if self.is_empty():
return
cur = self._head
print cur.item,
while cur.next != self._head:
cur = cur.next
print cur.item,
print ""
def add(self, item):
"""头部添加节点"""
node = Node(item)
if self.is_empty():
self._head = node
node.next = self._head
else:
#添加的节点指向_head
node.next = self._head
# 移到链表尾部,将尾部节点的next指向node
cur = self._head
while cur.next != self._head:
cur = cur.next
cur.next = node
#_head指向添加node的
self._head = node
def append(self, item):
"""尾部添加节点"""
node = Node(item)
if self.is_empty():
self._head = node
node.next = self._head
else:
# 移到链表尾部
cur = self._head
while cur.next != self._head:
cur = cur.next
# 将尾节点指向node
cur.next = node
# 将node指向头节点_head
node.next = self._head
def insert(self, pos, item):
"""在指定位置添加节点"""
if pos <= 0:
self.add(item)
elif pos > (self.length()-1):
self.append(item)
else:
node = Node(item)
cur = self._head
count = 0
# 移动到指定位置的前一个位置
while count <(pos-1):
count += 1
cur = cur.next
node.next = cur.next
cur.next = node
def remove(self, item):
"""删除一个节点"""
# 若链表为空,则直接返回
if self.is_empty():
return
# 将cur指向头节点
cur = self._head
pre = None
# 若头节点的元素就是要查找的元素item
if cur.item == item:
# 如果链表不止一个节点
if cur.next != self._head:
# 先找到尾节点,将尾节点的next指向第二个节点
while cur.next != self._head:
cur = cur.next
# cur指向了尾节点
cur.next = self._head.next
self._head = self._head.next
else:
# 链表只有一个节点
self._head = None
else:
pre = self._head
# 第一个节点不是要删除的
while cur.next != self._head:
# 找到了要删除的元素
if cur.item == item:
# 删除
pre.next = cur.next
return
else:
pre = cur
cur = cur.next
# cur 指向尾节点
if cur.item == item:
# 尾部删除
pre.next = cur.next
def search(self, item):
"""查找节点是否存在"""
if self.is_empty():
return False
cur = self._head
if cur.item == item:
return True
while cur.next != self._head:
cur = cur.next
if cur.item == item:
return True
return False
if __name__ == "__main__":
ll = SinCycLinkedlist()
ll.add(1)
ll.add(2)
ll.append(3)
ll.insert(2, 4)
ll.insert(4, 5)
ll.insert(0, 6)
print "length:",ll.length()
ll.travel()
print ll.search(3)
print ll.search(7)
ll.remove(1)
print "length:",ll.length()
ll.travel()
算法是独立存在的一种解决问题的方法和思想。
时间复杂度的几条基本计算规则
- 基本操作,即只有常数项,认为其时间复杂度为O(1)
- 顺序结构,时间复杂度按加法进行计算
- 循环结构,时间复杂度按乘法进行计算
- 分支结构,时间复杂度取最大值
- 判断一个算法的效率时,往往只需要关注操作数量的最高次项,其它次要项和常数项可以忽略
- 在没有特殊说明时,我们所分析的算法的时间复杂度都是指最坏时间复杂度