热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

数据分析方法论(一)——构建数据指标体系

数据分析是产品经理的一项重要能力,但不意味着产品经理要懂得多高深的统计学知识,要会用专业的数据挖掘工具。产品经理需要具备的数据分析能力是一种在深度理解业务的前提下,利用数据来指导业

数据分析是产品经理的一项重要能力,但不意味着产品经理要懂得多高深的统计学知识,要会用专业的数据挖掘工具。产品经理需要具备的数据分析能力是一种在深度理解业务的前提下,利用数据来指导业务增长的思维。
我会从构建数据指标体系、数据分析方法两部分来总结自己学到的一些知识。
首先从构建数据指标体系说起,一个成熟项目的指标体系往往经过前人的构建和完善后,已经非常成熟,不必从0开始构建产品的数据指标体系。但产品经理必须具备从0开始构建数据体系的能力,因为在职业生涯中一定会有接触新产品的时候,即便是同一产品在不同的生命周期重点数据指标也可能不一样。
而产品在构建数据指标体系的过程中,需要对指标的意义深入思考,后续进行数据分析时更能做到知其所以然。下面分四步来说明如何构建一个自己产品的数据指标。

第一步 归集数据指标

在构建一个数据指标体系前,首先需要将自己产品的相关指标都有什么。在这之前需要明确一个观点,任何产品的终极目标都是使企业或用户价值最大化。接下来就可以按照用户生命周期业务流程来归集所有数据指标。下面以P2P产品为例:

(1)P2P产品的终极目标在于投资和借款的规模最大化。所以体现在数据指标上,最直接的两个指标就是投资金额和借款金额。(由于投资指标和借款指标是相对独立的两个数据体系,本文后面的举例暂不涉及借款端数据体系)

(2)任何产品的用户都会有生命周期,即用户从接触产品到抛弃产品的一个过程。而这个过程是可以分成多个阶段的。只要我们思考清楚如何使每个阶段的用户去达到产品的终极目标,我们就可以归集出整个产品的所需要的大部分数据。P2P产品的用户基础生命周期按自然顺序可以分为五大阶段:

《数据分析方法论(一)——构建数据指标体系》 用户生命周期

投资用户阶段是实现产品终极目标的阶段,所以我们要做的工作就是使其他阶段的用户都进入投资用户阶段。所以在产品眼中,其实希望所有用户生命周期是这样演变的。

《数据分析方法论(一)——构建数据指标体系》 用户生命周期

其中,访客阶段、注册-投资、流失召回阶段是三个比较独立阶段,具体细化后可以得到相应的数据指标。

《数据分析方法论(一)——构建数据指标体系》 访客阶段
《数据分析方法论(一)——构建数据指标体系》 注册-召回阶段

按照一个完整的用户生命周期或业务流程,基本可以将产品所有相关的指标梳理完整。在搜集数据指标时,对每一个业务环节,可以按照规模、质量、转化率和使用率/占比**这几个主要数据评估目的来考虑。例如首次投资环节:

规模指标:人数规模,投资金额规模、投资订单规模、投资次数规模等;
质量指标:注册/实名-投资周期、人均投资金额等;
转化率指标:注册/实名/充值-投资转化率;
使用率/占比指标:首次投资占总投资用户比例等

第二步 数据指标拆解

归集完产品所涉及的指标后,会发现指标很多。但是在具体的业务中,可能不同业务阶段重点关注的指标不一样。例如渠道推广关注获客成本和转化效果,投资则关注投资金额和投资人数等等。所以对于不同的业务阶段,我们需要挑选出该阶段的核心指标,然后进行拆解,再根据拆解的指标去重点关注。
例如拉新阶段,我们最关注的是新投资用户的增长情况,所以可以将新用户增长数据指标拆分为:

新投资用户增长=浏览UV/APP激活×注册转化率×实名转化率×投资转化率

而投资阶段,我们最关注的是投资金额的增长情况,所以可以将投资金额数据指标拆分为:

投资金额增长=新投资用户数×投资次数×人均每次投资金额+老投资用户×回投率×投资次数×人均每次投资金额

如此一来,我们即知道在不同阶段,需要重点关注和分析哪些核心数据。只有哪些使核心指标效果最大化的细分指标才是最值得我们关注的。
除此以外,不同的部门重点关注的数据也不一样。例如市场推广重点关注渠道推广数据,运营部门重点关注业务增长数据,技术部门重点关注产品稳定性,性能数据。产品部门重点关注功能使用数据、用户画像数据。财务部门重点关注交易数据。

第三步 确定数据维度

在确定需要重点关注的数据指标后,就需要对数据指标进行维度的细分,例如:

按时间维度:秒、分、时、天、周、月、季、年
按渠道维度:推广注册、自然注册、活动注册
按用户类型:新老用户、高低净值用户、活跃/流失用户
按终端类型:微信公众号、PC官网、安卓APP、iOS APP
按地区:省、市等

至此一个初略的数据指标体系完整构建起来了。但是还需要在运用中根据实际情况来不断调整优化,毕竟即便是同一产品,不同阶段重点关注的数据都是不一样的。

感想

构建完一次数据指标体系后,对于现代管理学之父彼得德鲁克的名言“如果不能衡量它,就不能有效增长它。”有更加切身的理解。数据分析是一种思维能力,不仅是增长业务的利器,也是解决问题的有效途径。在第二篇数据总结中,我会再总结常用的数据分析方法。


推荐阅读
  • 智慧城市建设现状及未来趋势
    随着新基建政策的推进及‘十四五’规划的实施,我国正步入以5G、人工智能等先进技术引领的智慧经济新时代。规划强调加速数字化转型,促进数字政府建设,新基建政策亦倡导城市基础设施的全面数字化。本文探讨了智慧城市的发展背景、全球及国内进展、市场规模、架构设计,以及百度、阿里、腾讯、华为等领军企业在该领域的布局策略。 ... [详细]
  • 自SQL Server 2005以来,微软的这款数据库产品逐渐崭露头角,成为企业级应用中的佼佼者。本文将探讨SQL Server 2008的革新之处及其对企业级数据库市场的影响。 ... [详细]
  • 国内BI工具迎战国际巨头Tableau,稳步崛起
    尽管商业智能(BI)工具在中国的普及程度尚不及国际市场,但近年来,随着本土企业的持续创新和市场推广,国内主流BI工具正逐渐崭露头角。面对国际品牌如Tableau的强大竞争,国内BI工具通过不断优化产品和技术,赢得了越来越多用户的认可。 ... [详细]
  • 深入解析:手把手教你构建决策树算法
    本文详细介绍了机器学习中广泛应用的决策树算法,通过天气数据集的实例演示了ID3和CART算法的手动推导过程。文章长度约2000字,建议阅读时间5分钟。 ... [详细]
  • 自学编程与计算机专业背景者的差异分析
    本文探讨了自学编程者和计算机专业毕业生在技能、知识结构及职业发展上的不同之处,结合实际案例分析两者的优势与劣势。 ... [详细]
  • Hadoop入门与核心组件详解
    本文详细介绍了Hadoop的基础知识及其核心组件,包括HDFS、MapReduce和YARN。通过本文,读者可以全面了解Hadoop的生态系统及应用场景。 ... [详细]
  • 阅读本文大约需要3分钟。微信8.0版本的发布带来了许多令人振奋的新功能,如烟花特效和改进的悬浮窗,引发了用户的热烈反响。 ... [详细]
  • 本文作者分享了在阿里巴巴获得实习offer的经历,包括五轮面试的详细内容和经验总结。其中四轮为技术面试,一轮为HR面试,涵盖了大量的Java技术和项目实践经验。 ... [详细]
  • 程序员如何优雅应对35岁职业转型?这里有深度解析
    本文探讨了程序员在职业生涯中如何通过不断学习和技能提升,优雅地应对35岁左右的职业转型挑战。我们将深入分析当前热门技术趋势,并提供实用的学习路径。 ... [详细]
  • R语言基础入门指南
    本文介绍R语言的基本概念,包括其作为区分大小写的解释型语言的特点、主要的数据结构类型如向量、矩阵、数据框及列表等,并探讨了R语言中对象的灵活性与函数的应用。此外,文章还提供了关于如何使用R进行基本操作的示例,以及解决常见编程问题的方法。 ... [详细]
  • 本文旨在探讨机器学习与数据分析之间的差异,不仅在于它们处理的数据类型,还包括技术背景、业务应用场景以及参与者的不同。通过深入分析,希望能为读者提供清晰的理解。 ... [详细]
  • 58同城的Elasticsearch应用与平台构建实践
    本文由58同城高级架构师于伯伟分享,由陈树昌编辑整理,内容源自DataFunTalk。文章探讨了Elasticsearch作为分布式搜索和分析引擎的应用,特别是在58同城的实施案例,包括集群优化、典型应用实例及自动化平台建设等方面。 ... [详细]
  • 深入解析:主流开源分布式文件系统综述
    本文详细探讨了几款主流的开源分布式文件系统,包括HDFS、MooseFS、Lustre、GlusterFS和CephFS,重点分析了它们的元数据管理和数据一致性机制,旨在为读者提供深入的技术见解。 ... [详细]
  • 本文详细探讨了成为一名合格的初级Java工程师所需掌握的知识体系,以及从初级到中级乃至高级工程师的成长路径和职业发展前景。 ... [详细]
  • 强人工智能时代,区块链的角色与前景
    随着强人工智能的崛起,区块链技术在新的技术生态中扮演着怎样的角色?本文探讨了区块链与强人工智能之间的互补关系及其在未来技术发展中的重要性。 ... [详细]
author-avatar
小赖小燕_380
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有