热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

《数据安全法》实施后,企业如何依法进行数据安全加固及创新

《中华人民共和国数据安全数据安全法》(以下简称《数据安全法》)于本月初开始施行,重点强调了数据全生命周期的各环节的安全保护,对于数据访问、检索、修改等各项行为需做到身份核验、权限控

《中华人民共和国数据安全数据安全法》(以下简称《数据安全法》)于本月初开始施行,重点强调了数据全生命周期的各环节的安全保护,对于数据访问、检索、修改等各项行为需做到身份核验、权限控制及风险监测。对于在数据开放共享方面,《数据安全法》也进行了详细阐释,强调了国家要通过制定数据开放目录、要通过构建统一规范、互联互通、安全可控的数据开放平台来切实推动政务数据的开放和利用。

本次法规出台后,明确了企业数据管理者、运营者的数据保护责任,对数据相关使用及管理方均提出了较高的数据安全素养要求。那么对于企业数据管理者及运营者而言,在规定之下如何依法进行数据安全的加固,并在坚实的安全防护措施下进行数据创新呢?



大数据安全技术

需要覆盖企业数据的全生命周期

首先,企业需要厘清大数据安全的概念。大数据安全主要以网络安全为基石,在数据采集、传输、存储、处理、使用、交换及应用的全生命周期采用周全的安全防护措施,最终保障企业日常的应用开发、使用及办公安全。

图1:企业大数据安全技术总览


(1)在网络安全层,可通过访问控制、容器隔离等技术保障企业系统最底层的稳固;


(2)在数据安全加固层,使用加密、身份认证、权限及访问控制、灾备等技术来保障数据在采集与存储流程中的安全;


(3)在安全治理层,需要对数据进行脱敏、分类分级、审计、安全策略管理、水印与溯源等工作,为之后的数据安全流通做好前期准备工作。那么对于某些需要销毁的数据,企业也需要做到相应的数据归档和逻辑销毁工作,防止原有数据被再次读出和恢复;


(4)在数据安全流通层,可使用联邦学习、隐私保护、可信计算等新技术推动数据的开放与共享,但在过程中采用安全可信的交换方式防止数据产生泄露。

在完成以上工作后,企业才可以保障日常的应用开发、使用及办公的安全。



星环科技大数据安全中间件产品

提供企业数据安全防护能力

为满足企业以上的大数据安全保障需求,星环科技凭借其多年在大数据领域的深耕和行业优势,逐步开发并形成了较为完整的大数据安全中间件产品,可帮助企业级用户实现覆盖数据全生命周期的数据安全防护能力,更好地实现数据安全加固和创新。



图2:星环科技的大数据安全中间件


星环科技的大数据安全中间件包含身份认证与权限管理组件Transwarp Guardian、数据审计与泄露防护组件Transwarp Audit、数据安全治理工具Transwarp Defensor、数据流通门户Transwarp Foresight及隐私计算平台Transwarp Sophon FL,且对星环极速大数据平台Transwarp Data Hub完美兼容。

Transwarp Guardian是身份认证与权限管理组件,面向数据采集与存储阶段的安全加固,为用户提供集中的安全和资源管理服务。支持LDAP和Kerberos,保护集群免受恶意攻击和安全威胁,还可以对资源做细粒度的ACL控制。其多租户资源管理模块可以按照租户的方式管理资源,并通过一个图形化工具为用户提供权限配置以及资源配置接口。

Transwarp Audit面向对数据的操作和权限进行合理布控和监测,整合各节点中的监控信息,实现对数据访问和操作的集中监控、查看和管理的智能化、可视化审计。Audit支持对各类审计事件做出快速、准确的定位,并进行过滤和归并,实现集中、综合的展现,对异常事件实时告警,防止数据泄露等事故发生。

Transwarp Defensor 是数据安全治理工具,面向数据安全治理阶段,提供数据的安全分类分级、安全策略配置与管理等能力,可以帮助企业完成数据的安全治理,同时提供数据脱敏能力从而保护数据隐私,以及提供数据水印能力帮助安全管理人员对可能的数据泄露进行溯源,从而形成有效的数据隐私保护能力。

Transwarp Foresight 是企业内资产化数据的流通门户,面向数据安全流通阶段,为业务人员提供数据资产的检索、下载、共享的能力,结合着数据血缘帮助数据使用者、开发者和管理者做整体协同,构建其数据运营能力。主要提供数据资产的发布管理、统计分析、编目管理、共享管理、数据安全管理、流程与审核管理、检索管理等功能。


隐私计算平台Sophon FL

加速企业间数据安全共享及创新

以上组件为保障数据在采集、传输、存储、治理过程中进行安全加固的组件,而当数据来到流通、共享及使用阶段,就需要使用隐私计算、联邦学习、隐私保护、可信计算等新技术来解决数据流通阶段的安全问题。

星环科技推出了分布式的隐私计算平台Sophon FL,集联邦学习建模、加密网络通信等多种功能,为多方安全建模提供完整的解决方案。以隐私保护为前提,Sophon FL从根本上解决了跨组织协作时无法安全利用各方数据的困境,真正实现了“原始数据不流通,分析模型流通”。

图3:星环科技隐私计算平台Sophon FL架构图


安全性方面,Sophon FL在模型接入和计算时采用了同态加密、差分隐私、秘密共享等多种加密方式,并在模型传输时采用了TLS协议加密,双重加密有效保障信息安全。确保各方在数据隐私得到保护的前提下,进行协作数据分析建模和业务应用。

易用性方面,平台提供多种开箱即用的工具,方便用户在联邦框架下进行数据处理、分析、特征工程等工作,并快速建立机器学习和深度学习模型。为适应不同业务场景,分别提供横向联邦学习、纵向联邦学习和联邦迁移学习。

性能方面,由于联邦学习需要进行计算复杂度较高的加解密运算和多轮次的分布式计算,相比于传统的机器学习任务,数据计算及传输任务量繁重。因此,星环科技研发了加密网络通信模块,负责节点间大量多批次加密信息的传输,多种加密安全手段和优异的通信架构,确保平台在大数据量下也能获得卓越的性能。

在联邦学习等隐私计算技术的加持下,Sophon FL可以让不同企业间的异业合作成为可能,让企业内的数据在不出企业的前提下迸发出更大的数据价值:如银行、税务及工商信息帮助小微企业信贷评审的KYC和KYB工作覆盖更加全面;社交网络帮助零售企业的产品营销的客户画像和推送更加精准等等。

去年,星环科技的Sophon FL平台已成为国内首批通过信通院资质认证的隐私计算平台,并通过了信通院基于联邦学习进行的安全评估。在实际案例中更为政府打击群租房的行动计划提供了技术和平台支持。

总的来说,Sophon FL的多种联邦学习算法适用于各类垂直业务场景,提供了一个安全、可靠、易用的隐私计算平台,从技术层面让跨企业的AI协作成为可能。

当然,为实现企业数据全生命周期的安全防护,技术和平台支撑只是重要的工作之一。在这之前,企业还需要建立完善的顶层数据安全管理制度,严格划分数据使用和管理边界,方可找到数据安全管理和数据高效流转间的平衡点,最终实现企业数据安全加固下的数据创新。


推荐阅读
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • 应用链时代,详解 Avalanche 与 Cosmos 的差异 ... [详细]
  • 秒建一个后台管理系统?用这5个开源免费的Java项目就够了
    秒建一个后台管理系统?用这5个开源免费的Java项目就够了 ... [详细]
  • 在2019中国国际智能产业博览会上,百度董事长兼CEO李彦宏强调,人工智能应务实推进其在各行业的应用。随后,在“ABC SUMMIT 2019百度云智峰会”上,百度展示了通过“云+AI”推动AI工业化和产业智能化的最新成果。 ... [详细]
  • 独家解析:深度学习泛化理论的破解之道与应用前景
    本文深入探讨了深度学习泛化理论的关键问题,通过分析现有研究和实践经验,揭示了泛化性能背后的核心机制。文章详细解析了泛化能力的影响因素,并提出了改进模型泛化性能的有效策略。此外,还展望了这些理论在实际应用中的广阔前景,为未来的研究和开发提供了宝贵的参考。 ... [详细]
  • Cosmos生态系统为何迅速崛起,波卡作为跨链巨头应如何应对挑战?
    Cosmos生态系统为何迅速崛起,波卡作为跨链巨头应如何应对挑战? ... [详细]
  • 能够感知你情绪状态的智能机器人即将问世 | 科技前沿观察
    本周科技前沿报道了多项重要进展,包括美国多所高校在机器人技术和自动驾驶领域的最新研究成果,以及硅谷大型企业在智能硬件和深度学习技术上的突破性进展。特别值得一提的是,一款能够感知用户情绪状态的智能机器人即将问世,为未来的人机交互带来了全新的可能性。 ... [详细]
  • 美团优选推荐系统架构师 L7/L8:算法与工程深度融合 ... [详细]
  • ### 优化后的摘要本学习指南旨在帮助读者全面掌握 Bootstrap 前端框架的核心知识点与实战技巧。内容涵盖基础入门、核心功能和高级应用。第一章通过一个简单的“Hello World”示例,介绍 Bootstrap 的基本用法和快速上手方法。第二章深入探讨 Bootstrap 与 JSP 集成的细节,揭示两者结合的优势和应用场景。第三章则进一步讲解 Bootstrap 的高级特性,如响应式设计和组件定制,为开发者提供全方位的技术支持。 ... [详细]
  • 本文深入探讨了NoSQL数据库的四大主要类型:键值对存储、文档存储、列式存储和图数据库。NoSQL(Not Only SQL)是指一系列非关系型数据库系统,它们不依赖于固定模式的数据存储方式,能够灵活处理大规模、高并发的数据需求。键值对存储适用于简单的数据结构;文档存储支持复杂的数据对象;列式存储优化了大数据量的读写性能;而图数据库则擅长处理复杂的关系网络。每种类型的NoSQL数据库都有其独特的优势和应用场景,本文将详细分析它们的特点及应用实例。 ... [详细]
  • 深入解析 OpenSSL 生成 SM2 证书:非对称加密技术与数字证书、数字签名的关联分析
    本文深入探讨了 OpenSSL 在生成 SM2 证书过程中的技术细节,重点分析了非对称加密技术在数字证书和数字签名中的应用。非对称加密通过使用公钥和私钥对数据进行加解密,确保了信息传输的安全性。公钥可以公开分发,用于加密数据或验证签名,而私钥则需严格保密,用于解密数据或生成签名。文章详细介绍了 OpenSSL 如何利用这些原理生成 SM2 证书,并讨论了其在实际应用中的安全性和有效性。 ... [详细]
  • REST与RPC:选择哪种API架构风格?
    在探讨REST与RPC这两种API架构风格的选择时,本文首先介绍了RPC(远程过程调用)的概念。RPC允许客户端通过网络调用远程服务器上的函数或方法,从而实现分布式系统的功能调用。相比之下,REST(Representational State Transfer)则基于资源的交互模型,通过HTTP协议进行数据传输和操作。本文将详细分析两种架构风格的特点、适用场景及其优缺点,帮助开发者根据具体需求做出合适的选择。 ... [详细]
  • 深入解析HTTPS:保障Web安全的加密协议
    本文详细探讨了HTTPS协议在保障Web安全中的重要作用。首先分析了HTTP协议的不足之处,包括数据传输过程中的安全性问题和内容加密的缺失。接着介绍了HTTPS如何通过使用公钥和私钥的非对称加密技术以及混合加密机制,确保数据的完整性和机密性。最后强调了HTTPS的安全性和可靠性,为现代网络通信提供了坚实的基础。 ... [详细]
  • a16z深入解析:代币设计的常见误区、优化策略及未来趋势分析
    a16z深入解析:代币设计的常见误区、优化策略及未来趋势分析 ... [详细]
author-avatar
火星人平凡五哥
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有