热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

使用Python的matplotlib绘制广义mandelbrot集

nsitionalENhttp:www.w3.orgTRxhtml1DTDxhtml1-transitional.dtd

迭代公式的指数,使用的1+5j,这是个复数,所以是广义mandelbrot集,大家可以自行修改指数,得到其他图形。各种库安装不全的,自行想办法

Python 3.6.7。

Linux系统:Ubuntu 18.04.2

完整代码:

#encoding=utf-8
import numpy as np
import pylab as pl
import time
from matplotlib import cm
from math import log

escape_radius = 10
iter_num = 20

def draw_mandelbrot2(cx, cy, d, N=600):
    global mandelbrot
    """
    绘制点(cx, cy)附近正负d的范围的Mandelbrot
    """
    x0, x1, y0, y1 = cx-d, cx+d, cy-d, cy+d 
    y, x = np.ogrid[y0:y1:N*1j, x0:x1:N*1j]
    c = x + y*1j

    smooth_mand = np.frompyfunc(smooth_iter_point,1,1)(c).astype(np.float)
    pl.gca().set_axis_off()
    pl.imshow(smooth_mand, cmap=cm.Blues_r, extent=[x0,x1,y1,y0])
    pl.show()


def smooth_iter_point(c):
    z = c #赋初值
    d = 1+2j  #这里,把幂运算的指数,设定成复数1+2j, 就是广义mandelbrot集合, d=2就是标准mandelbrot集,d=3就是三阶的
    for i in range(1, iter_num): 
        if abs(z)>escape_radius: break 
        z = z**d+c  # **运算符是幂运算
    #下面是重新计算迭代次数,可以获取连续的迭代次数(即正规化)
    absz = abs(z) #复数的模 
    if absz > 2.0:
        mu = i - log(log(abs(z),2),2)
    else:
        mu = i
    return mu # 返回正规化的迭代次数

def draw_mandelbrot(cx, cy, d, N=800):
    """
    绘制点(cx, cy)附近正负d的范围的Mandelbrot
    """
    global mandelbrot

    x0, x1, y0, y1 = cx-d, cx+d, cy-d, cy+d 
    y, x = np.ogrid[y0:y1:N*1j, x0:x1:N*1j]
    c = x + y*1j

    # 创建X,Y轴的坐标数组
    ix, iy = np.mgrid[0:N,0:N]

    # 创建保存mandelbrot图的二维数组,缺省值为最大迭代次数
    mandelbrot = np.ones(c.shape, dtype=np.int)*100

    # 将数组都变成一维的
    ix.shape = -1
    iy.shape = -1
    c.shape = -1
    z = c.copy() # 从c开始迭代,因此开始的迭代次数为1

    start = time.clock()

    for i in xrange(1,100):
        # 进行一次迭代
        z *= z
        z += c
        # 找到所有结果逃逸了的点
        tmp = np.abs(z) > 2.0
        # 将这些逃逸点的迭代次数赋值给mandelbrot图
        mandelbrot[ix[tmp], iy[tmp]] = i

        # 找到所有没有逃逸的点
        np.logical_not(tmp, tmp)
        # 更新ix, iy, c, z只包含没有逃逸的点
        ix,iy,c,z = ix[tmp], iy[tmp], c[tmp],z[tmp]
        if len(z) == 0: break

    print ("time="),time.clock() - start

    pl.imshow(mandelbrot, cmap=cm.Blues_r, extent=[x0,x1,y1,y0])
    pl.gca().set_axis_off()
    pl.show()

#鼠标点击触发执行的函数
def on_press(event):
    global g_size
    print (event)
    print (dir(event))
    newx = event.xdata
    newy = event.ydata
    print (newx)
    print (newy)

    #不合理的鼠标点击,直接返回,不绘制
    if newx == None or newy == None  or event.dblclick == True:
        return None
    #不合理的鼠标点击,直接返回,不绘制
    if event.button == 1:  #button ==1 代表鼠标左键按下, 是放大图像
        g_size /= 2
    elif event.button == 3: #button == 3 代表鼠标右键按下, 是缩小图像
        g_size *= 2
    else:
        return None
    print (g_size)

    draw_mandelbrot2(newx,newy,g_size)

fig, ax = pl.subplots(1)

g_size = 2.5

#注册鼠标事件
fig.canvas.mpl_connect('button_press_event', on_press)

#初始绘制一个图
draw_mandelbrot2(0,0,g_size)

效果图如下:

#使用Python的matplotlib绘制广义mandelbrot集


推荐阅读
  • PyCharm下载与安装指南
    本文详细介绍如何从官方渠道下载并安装PyCharm集成开发环境(IDE),涵盖Windows、macOS和Linux系统,同时提供详细的安装步骤及配置建议。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • 本文详细分析了JSP(JavaServer Pages)技术的主要优点和缺点,帮助开发者更好地理解其适用场景及潜在挑战。JSP作为一种服务器端技术,广泛应用于Web开发中。 ... [详细]
  • 本文详细介绍如何使用Python进行配置文件的读写操作,涵盖常见的配置文件格式(如INI、JSON、TOML和YAML),并提供具体的代码示例。 ... [详细]
  • Linux 系统启动故障排除指南:MBR 和 GRUB 问题
    本文详细介绍了 Linux 系统启动过程中常见的 MBR 扇区和 GRUB 引导程序故障及其解决方案,涵盖从备份、模拟故障到恢复的具体步骤。 ... [详细]
  • 本文总结了汇编语言中第五至第八章的关键知识点,涵盖间接寻址、指令格式、安全编程空间、逻辑运算指令及数据重复定义等内容。通过详细解析这些内容,帮助读者更好地理解和应用汇编语言的高级特性。 ... [详细]
  • 1.如何在运行状态查看源代码?查看函数的源代码,我们通常会使用IDE来完成。比如在PyCharm中,你可以Ctrl+鼠标点击进入函数的源代码。那如果没有IDE呢?当我们想使用一个函 ... [详细]
  • 本文介绍了一款用于自动化部署 Linux 服务的 Bash 脚本。该脚本不仅涵盖了基本的文件复制和目录创建,还处理了系统服务的配置和启动,确保在多种 Linux 发行版上都能顺利运行。 ... [详细]
  • 深入理解C++中的KMP算法:高效字符串匹配的利器
    本文详细介绍C++中实现KMP算法的方法,探讨其在字符串匹配问题上的优势。通过对比暴力匹配(BF)算法,展示KMP算法如何利用前缀表优化匹配过程,显著提升效率。 ... [详细]
  • 在Ubuntu 16.04 LTS上配置Qt Creator开发环境
    本文详细介绍了如何在Ubuntu 16.04 LTS系统中安装和配置Qt Creator,涵盖了从下载到安装的全过程,并提供了常见问题的解决方案。 ... [详细]
  • 掌握远程执行Linux脚本和命令的技巧
    本文将详细介绍如何利用Python的Paramiko库实现远程执行Linux脚本和命令,帮助读者快速掌握这一实用技能。通过具体的示例和详尽的解释,让初学者也能轻松上手。 ... [详细]
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • 从 .NET 转 Java 的自学之路:IO 流基础篇
    本文详细介绍了 Java 中的 IO 流,包括字节流和字符流的基本概念及其操作方式。探讨了如何处理不同类型的文件数据,并结合编码机制确保字符数据的正确读写。同时,文中还涵盖了装饰设计模式的应用,以及多种常见的 IO 操作实例。 ... [详细]
  • 在哈佛大学商学院举行的Cyberposium大会上,专家们深入探讨了开源软件的崛起及其对企业市场的影响。会议指出,开源软件不仅为企业提供了新的增长机会,还促进了软件质量的提升和创新。 ... [详细]
  • 360SRC安全应急响应:从漏洞提交到修复的全过程
    本文详细介绍了360SRC平台处理一起关键安全事件的过程,涵盖从漏洞提交、验证、排查到最终修复的各个环节。通过这一案例,展示了360在安全应急响应方面的专业能力和严谨态度。 ... [详细]
author-avatar
手机用户2502920591_700
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有