热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

深度学习的理论基础

谈到深度学习的理论基础,可能读者首先想到的就是通用近似定理(Universalapproximationtheorem),其表示拥有无限神经元的单层前馈网络能逼近紧致实数子集上的任

谈到深度学习的理论基础,可能读者首先想到的就是通用近似定理(Universal approximation theorem),其表示拥有无限神经元的单层前馈网络能逼近紧致实数子集上的任意连续函数。


通俗来说,


只要神经元足够多,单层前馈神经网络「有潜力」逼近任意复杂的连续函数。

在 1989 年提出通用近似定理以来,至少我们有了最基本的一个理论基础,即神经网络有潜力解决各种复杂的现实问题。

MIT 教授 Tomaso Poggio 曾在他的系列研究中 [1] 表示深度学习理论研究可以分为三大类:

表征问题(Representation):为什么深层网络比浅层网络的表达能力更好?最优化问题(Optimization):为什么梯度下降能找到很好的极小值解,好的极小值有什么特点?泛化问题(Generalization):为什么过参数化仍然能拥有比较好的泛化性,不过拟合?对于表征问题,我们想要知道深度神经网络这种「复合函数」,它的表达能力到底怎么确定,它的复合机制又是什么样的。我们不再满足于「能拟合任意函数」这样的定性描述,我们希望知道是不是有一种方法能描述 50 层 ResNet、12 层 Transformer 的拟合能力,能不能清楚地了解它们的理论性质与过程。

有了表征能力,那也只是具备了拟合潜力,深度学习还需要找到一组足够好的极值点,这就是模型的最优解。不同神经网络的「最优化 Landscape」是什么样的、怎样才能找到这种高维复杂函数的优秀极值点、极值点的各种属性都需要完善的理论支持。

最后就是泛化了,深度模型泛化到未知样本的能力直接决定了它的价值。那么深度模型的泛化边界该怎样确定、什么样的极值点又有更好的泛化性能,很多重要的特性都等我们确定一套理论基准。

总而言之,谈到深度学习理论基础,我们总是少不了听到这些关键词:

3. 经过正则化后,GAN 可以通过有限大小的生成器与判别器实现极小极大收敛率。作为分离 GAN 与其它非参工具的首批理论结果,它可能可以帮助解释为什么 GAN 在高维数据上能获得这么大的成功。

最后,不论是深度学习真正的理论基础,还是从理论出发构建新方法、新模型,至少在 2019 年的 AI 顶会中,我们很高兴能看到各种前沿研究都在拜托「启发式」的新发现,反而更系统地关注它们的立足基础。也许这些新发现,最终能带领我们构建一个系统的领域、一个成熟的学科。





  • 点赞



  • 收藏



  • 分享




    • 文章举报






往事如yan
发布了55 篇原创文章 · 获赞 44 · 访问量 11万+
私信

关注

推荐阅读
  • 机器学习核心概念与技术
    本文系统梳理了机器学习的关键知识点,涵盖模型评估、正则化、线性模型、支持向量机、决策树及集成学习等内容,并深入探讨了各算法的原理和应用场景。 ... [详细]
  • 2017年人工智能领域的十大里程碑事件回顾
    随着2018年的临近,我们一同回顾过去一年中人工智能领域的重要进展。这一年,无论是政策层面的支持,还是技术上的突破,都显示了人工智能发展的迅猛势头。以下是精选的2017年人工智能领域最具影响力的事件。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 卷积神经网络(CNN)基础理论与架构解析
    本文介绍了卷积神经网络(CNN)的基本概念、常见结构及其各层的功能。重点讨论了LeNet-5、AlexNet、ZFNet、VGGNet和ResNet等经典模型,并详细解释了输入层、卷积层、激活层、池化层和全连接层的工作原理及优化方法。 ... [详细]
  • 探索电路与系统的起源与发展
    本文回顾了电路与系统的发展历程,从电的早期发现到现代电子器件的应用。文章不仅涵盖了基础理论和关键发明,还探讨了这一学科对计算机、人工智能及物联网等领域的深远影响。 ... [详细]
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
  • 由中科院自动化所、中科院大学及南昌大学联合研究提出了一种新颖的双路径生成对抗网络(TP-GAN),该技术能通过单一侧面照片生成逼真的正面人脸图像,显著提升了不同姿态下的人脸识别效果。 ... [详细]
  • 本文探讨了亚马逊Go如何通过技术创新推动零售业的发展,以及面临的市场和隐私挑战。同时,介绍了亚马逊最新的‘刷手支付’技术及其潜在影响。 ... [详细]
  • 吴恩达推出TensorFlow实践课程,Python基础即可入门,四个月掌握核心技能
    量子位报道,deeplearning.ai最新发布了TensorFlow实践课程,适合希望使用TensorFlow开发AI应用的学习者。该课程涵盖机器学习模型构建、图像识别、自然语言处理及时间序列预测等多个方面。 ... [详细]
  • 资源推荐 | TensorFlow官方中文教程助力英语非母语者学习
    来源:机器之心。本文详细介绍了TensorFlow官方提供的中文版教程和指南,帮助开发者更好地理解和应用这一强大的开源机器学习平台。 ... [详细]
  • 智能车间调度研究进展
    本文综述了基于强化学习的智能车间调度策略,探讨了车间调度问题在资源有限条件下的优化方法。通过数学规划、智能算法和强化学习等手段,解决了作业车间、流水车间和加工车间中的静态与动态调度挑战。重点讨论了不同场景下的求解方法及其应用前景。 ... [详细]
  • 基于2-channelnetwork的图片相似度判别一、相关理论本篇博文主要讲解2015年CVPR的一篇关于图像相似度计算的文章:《LearningtoCompar ... [详细]
  • 浪潮AI服务器NF5488A5在MLPerf基准测试中刷新多项纪录
    近日,国际权威AI基准测试平台MLPerf发布了最新的推理测试结果,浪潮AI服务器NF5488A5在此次测试中创造了18项性能纪录,显著提升了数据中心AI推理性能。 ... [详细]
  • 图像分类算法的优化策略与实践
    本文探讨了《Bag of Tricks for Image Classification with Convolutional Neural Networks》论文中的多项技术,旨在通过具体实例和实验验证,提高卷积神经网络在图像分类任务中的性能。文章详细介绍了从模型训练加速、网络结构调整到训练参数优化等多个方面的改进方法。 ... [详细]
author-avatar
1712477436
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有