热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

【STM32】定时器TIM触发ADC采样,DMA搬运到内存(超详细讲解)

TIMADCDMA原理一般情况下,当我们需要进行采样的时候,需要用到ADC。例如:需要对某个信号进行定时采样(也就是隔一段
TIM+ADC+DMA原理

一般情况下,当我们需要进行采样的时候,需要用到ADC。例如:需要对某个信号进行定时采样(也就是隔一段时间,比如说2ms)。

本文提供的解决方案是:使用ADC的定时器触发ADC单次转换的功能,然后使用DMA进行数据的搬运!

这样只要设置好定时器的触发间隔,就能实现ADC定时采样转换的功能(即采样速率),然后可以在程序的死循环中一直检测DMA转换完成标志,然后进行数据的读取,或者使能DMA转换完成中断,这样每次转换完成就会产生中断。

主要需要解决的一个问题:定时器触发ADC采样,如何实现?

定时器触发ADC采样,是属于外部触发转换的一种方式。在《STM32中文参考手册》中,找到了关于这部分的内容:


配合上ADC外设的框图:


可以看出,STM32的ADC1和ADC2用于规则通道的外部触发可以有以上6个事件信号,本文使用TIM2_CH2触发ADC1

ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T2_CC2; //使用外部触发模式
ADC_ExternalTrigConvCmd(ADC1, ENABLE); //设置外部触发模式使能

对于ADC的配置不太熟悉的,可以参考博文:【STM32】ADC的基本原理、寄存器(超基础、详细版)、
【STM32】ADC库函数、一般步骤详解(实例:内部温度传感器实验)

同时注意一下外部触发的触发条件:当外部触发信号被选为ADC规则或注入转换时,只有它的上升沿可以启动转换。

如何有上升沿呢?定时器配置为PWM输出模式,这是重点。通过调用TIM_OC2Init(Tim2, & TIM_OCInitStructure),完成对TIM2_CH2的PWM配置。

TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; //选择定时器模式:TIM脉冲宽度调制模式1
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能
TIM_OCInitStructure.TIM_Pulse = 1000;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low; //输出极性:TIM输出比较极性低
TIM_OC2Init(TIM2, & TIM_OCInitStructure); //初始化外设TIM2_CH2

对于PWM的配置不太熟悉的,可以参考博文:【STM32】通用定时器的PWM输出(实例:PWM输出)、【STM32】通用定时器的基本原理(实例:定时器中断)


其次,就是DMA将采样的数据由ADC1外设搬运到内存中

配置DMA的外设地址和内存地址,并设置方向为从外设到内存即可。


可以看到ADC1可以作为DMA1的外设请求信号,那么ADC1的地址在哪里呢?


根据ADC1寄存器组的起始地址,找到偏移值:


最终得到ADC1_DR_Address=0x4001244C

DMA_InitStructure.DMA_PeripheralBaseAddr = ADC1_DR_Address; //ADC1地址
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)&ADC_ConvertedValue; //内存地址
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; //方向(从外设到内存)

对于DMA的配置不太熟悉的,可以参考博文:STM32】DMA基本原理、寄存器、库函数(DMA一般步骤)

STM32全部源码

本文采用的外设为:TIM2_CH2外部触发PA6(ADC1_CH6)采样,通过DMA1搬运到内存。

#include "adc.h"volatile uint16_t ADC_ConvertedValue; //ADC采样的数据
#define ADC1_DR_Address ((u32)0x4001244C) //ADC1的地址//TIM2配置,arr为重加载值,psc为预分频系数
void TIM2_Init(u16 arr,u16 psc)
{TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;TIM_OCInitTypeDef TIM_OCInitStructure;RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); //时钟使能//定时器TIM2初始化TIM_TimeBaseStructure.TIM_Period = arr; //设置在下一个更新事件装入活动的自动重装载寄存器周期的值TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置用来作为TIMx时钟频率除数的预分频值TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; //设置时钟分割:TDTS = Tck_timTIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //TIM向上计数模式TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); //根据指定的参数初始化TIMx的时间基数单位TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; //选择定时器模式:TIM脉冲宽度调制模式1TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能TIM_OCInitStructure.TIM_Pulse = 1000;TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low; //输出极性:TIM输出比较极性低TIM_OC2Init(TIM2, & TIM_OCInitStructure); //初始化外设TIM2_CH2TIM_Cmd(TIM2, ENABLE); //使能TIMxTIM_CtrlPWMOutputs(TIM2, ENABLE);
}//DMA1配置
void DMA1_Init()
{DMA_InitTypeDef DMA_InitStructure;NVIC_InitTypeDef NVIC_InitStructure;RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1,ENABLE); //使能ADC1通道时钟//DMA1初始化DMA_DeInit(DMA1_Channel1);DMA_InitStructure.DMA_PeripheralBaseAddr = ADC1_DR_Address; //ADC1地址DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)&ADC_ConvertedValue; //内存地址DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; //方向(从外设到内存)DMA_InitStructure.DMA_BufferSize = 1; //传输内容的大小DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; //外设地址固定DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Disable; //内存地址固定DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord ; //外设数据单位DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord ; //内存数据单位DMA_InitStructure.DMA_Mode = DMA_Mode_Circular ; //DMA模式:循环传输DMA_InitStructure.DMA_Priority = DMA_Priority_High ; //优先级:高DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; //禁止内存到内存的传输DMA_Init(DMA1_Channel1, &DMA_InitStructure); //配置DMA1DMA_ITConfig(DMA1_Channel1,DMA_IT_TC, ENABLE); //使能传输完成中断NVIC_InitStructure.NVIC_IRQChannel = DMA1_Channel1_IRQn;NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;NVIC_Init(&NVIC_InitStructure);DMA_Cmd(DMA1_Channel1,ENABLE);
}//GPIO配置,PA6
void GPIO_Init()
{GPIO_InitTypeDef GPIO_InitStructure;RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); //使能GPIOA时钟//PA6 作为模拟通道输入引脚 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;GPIO_Init(GPIOA, &GPIO_InitStructure);
}void Adc_Init(){ADC_InitTypeDef ADC_InitStructure;TIM2_Init(30000,7199); //72000000/7200=10000Hz,每3s采集一次DMA1_Init();GPIO_Init();RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); //使能ADC1通道时钟//ADC1初始化ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; //独立ADC模式ADC_InitStructure.ADC_ScanConvMode = DISABLE; //关闭扫描方式ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; //关闭连续转换模式ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T2_CC2; //使用外部触发模式ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //采集数据右对齐ADC_InitStructure.ADC_NbrOfChannel = 1; //要转换的通道数目ADC_Init(ADC1, &ADC_InitStructure);RCC_ADCCLKConfig(RCC_PCLK2_Div6); //配置ADC时钟,为PCLK2的6分频,即12HzADC_RegularChannelConfig(ADC1, ADC_Channel_6, 1, ADC_SampleTime_239Cycles5); //配置ADC1通道6为239.5个采样周期 //使能ADC、DMAADC_DMACmd(ADC1,ENABLE);ADC_Cmd(ADC1,ENABLE);ADC_ResetCalibration(ADC1); //复位校准寄存器while(ADC_GetResetCalibrationStatus(ADC1)); //等待校准寄存器复位完成ADC_StartCalibration(ADC1); //ADC校准while(ADC_GetCalibrationStatus(ADC1)); //等待校准完成ADC_ExternalTrigConvCmd(ADC1, ENABLE); //设置外部触发模式使能
}//中断处理函数
void DMA1_Channel1_IRQHandler(void)
{if(DMA_GetITStatus(DMA1_IT_TC1)!=RESET){//中断处理代码printf("The current value =%d \r\n",ADC_ConvertedValue);DMA_ClearITPendingBit(DMA1_IT_TC1);}
}

主程序中只需要调用Adc_Init(),然后空循环即可。此时串口调试助手,就会每隔3秒把ADC_ConvertedValue的值打印出来了。



推荐阅读
  • 本文详细介绍了在不同操作系统中查找和设置网卡的方法,涵盖了Windows系统的具体步骤,并提供了关于网卡位置、无线网络设置及常见问题的解答。 ... [详细]
  • 深入解析Spring启动过程
    本文详细介绍了Spring框架的启动流程,帮助开发者理解其内部机制。通过具体示例和代码片段,解释了Bean定义、工厂类、读取器以及条件评估等关键概念,使读者能够更全面地掌握Spring的初始化过程。 ... [详细]
  • 在编译BSP包过程中,遇到了一个与 'gets' 函数相关的编译错误。该问题通常发生在较新的编译环境中,由于 'gets' 函数已被弃用并视为安全漏洞。本文将详细介绍如何通过修改源代码和配置文件来解决这一问题。 ... [详细]
  • 本文深入探讨了UNIX/Linux系统中的进程间通信(IPC)机制,包括消息传递、同步和共享内存等。详细介绍了管道(Pipe)、有名管道(FIFO)、Posix和System V消息队列、互斥锁与条件变量、读写锁、信号量以及共享内存的使用方法和应用场景。 ... [详细]
  • 烤鸭|本文_Spring之Bean的生命周期详解
    烤鸭|本文_Spring之Bean的生命周期详解 ... [详细]
  • 本文探讨了如何使用pg-promise库在PostgreSQL中高效地批量插入多条记录,包括通过事务和单一查询两种方法。 ... [详细]
  • Go语言开发中的常见陷阱与解决方案
    本文探讨了在使用Go语言开发过程中遇到的一些典型问题,包括Map遍历的不确定性、切片操作的潜在风险以及并发处理时的常见错误。通过具体案例分析,提供有效的解决策略。 ... [详细]
  • 如何使用Ping命令来测试网络连接?当网卡安装和有关参数配置完成后,可以使用ping命令来测试一下网络是否连接成功。以winXP为例1、打开XP下DOS窗口具体操作是点击“开始”菜 ... [详细]
  • 探讨如何修复Visual Studio Code中JavaScript的智能感知和自动完成功能在特定场景下无法正常工作的问题,包括配置检查、语言模式选择以及类型注释的使用。 ... [详细]
  • 本章详细介绍SP框架中的数据操作方法,包括数据查找、记录查询、新增、删除、更新、计数及字段增减等核心功能。通过具体示例和详细解析,帮助开发者更好地理解和使用这些方法。 ... [详细]
  • 探讨ChatGPT在法律和版权方面的潜在风险及影响,分析其作为内容创造工具的合法性和合规性。 ... [详细]
  • 配置PHPStudy环境并使用DVWA进行Web安全测试
    本文详细介绍了如何在PHPStudy环境下配置DVWA( Damn Vulnerable Web Application ),并利用该平台进行SQL注入和XSS攻击的练习。通过此过程,读者可以熟悉常见的Web漏洞及其利用方法。 ... [详细]
  • 本文介绍了如何通过在数据库表中增加一个字段来记录文章的访问次数,并提供了一个示例方法用于更新该字段值。 ... [详细]
  • QNX 微内核(procnto-instr)的监测版本内置了高级跟踪与分析工具,能够实现实时系统监控。该模块适用于单处理器及多处理器系统。 ... [详细]
  • 本文探讨了一个特定于 Spring 4.2.5 的问题,即在应用上下文刷新事件(ContextRefreshedEvent)触发时,带有 @Transactional 注解的 Bean 未能正确代理事务。该问题在 Spring 4.1.9 版本中正常运行,但在升级至 4.2.5 后出现异常。 ... [详细]
author-avatar
傻缺缺的谭贱儿_452
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有