热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

如何理解线性赋范空间、希尔伯特空间,巴拿赫空间,拓扑空间

赋范空间,度量空间,线性赋范空间,线性度量空间,希尔伯特空间,巴拿赫空间,拓扑空间如何不被他们吓

赋范空间,度量空间,线性赋范空间,线性度量空间,希尔伯特空间, 巴拿赫空间,拓扑空间如何不被他们吓到?


函数空间


一、问题的提出

在微积分中可以定义极限和连续,依赖于距离
那么,什么是距离呢?
通俗的看法,大家都认为距离就是所谓的直线
大航海时期的距离如何测量?
但是,在这张图中,我们如何衡量两点之间的距离?
因为地球仪上不能画直线,所以这里的距离显然就不是直线了。我们只能沿着地球仪取曲线作为距离

再来看一张图
故宫

从A到B的距离又是多少呢?

显然不能计算直线距离,比较合理的距离,应该是走一个L字型 (这里就不画出来了…)

两个向量之间的距离又该如何定义呢?

两条曲线之间的距离呢?

两条曲线的距离


二、距离、范数


(向量的距离)

x=(x1,...,xn)y=(y1,...,yn) 的距离

情形1:
d1(x,y)=(x1y1)2+...+(xnyn)2
情形2:
d2(x,y)=max{|x1y1|,...,|xnyn|}
情形3:
d3(x,y)=|x1y1|+|xnyn|

其中d1是最常见的也就是中学所学的距离,而d3 则是天安门图中从A到B的距离


(曲线的距离)

曲线距离

注意这里只能取最大值,不能取最小值。一旦取了最小值,则任意两个有交点的曲线的距离都为0,显然,这样是有问题,所以只能去最大值


定义距离

看了那么多距离,我们如何定义呢?

定义距离
则称d(x,y)是这两点之间的距离。


线性空间


  • 有向量的加法和数乘
  • 满足:
    1. 向量加法结合律:u + (v + w) = (u + v) + w;
    2. 向量加法交换律:v + w = w + v;
    3. 向量加法的单位元:V 里有一个叫做零向量的 0,∀ v ∈ V , v + 0 = v;
    4. 向量加法的逆元素:∀v∈V, ∃w∈V,使得 v + w = 0;
    5. 标量乘法分配于向量加法上:a(v + w) = a v + a w;
    6. 标量乘法分配于域加法上: (a + b)v = a v + b v;
    7. 标量乘法一致于标量的域乘法: a(b v) = (ab)v;
    8. 标量乘法有单位元: 1 v = v, 这里 1 是指域 F 的乘法单位元。

定义范数

定义:设


||x||Rn
若满足:



(1)||x||0,xRn;||x||=0x=0;




(2)||αx||=|α|||x||,αR,xRn;




(3)||x+y||||x||+||y||,x,yRn

注意:可以简单的看成到零点距离多了(2);所以范数就是一个更加具体的距离!!!

我们接下来,有两个方向可以走,一个是在距离上面加东西,让距离更加具体化,另一种是在距离上减东西,让距离更加抽象画,像范数就是让距离更加具体化了

所以 范数有如下情况:
范数


注意:

由范数可以定义距离:


d(x,y)=||xy||


但由距离不一定可以定义范数,例如:



||x||=d(0,x),||αx||=d(0,αx)|α|||x||,

所以,一旦定义了抽象的距离,我们就必须习惯用定义去证明对错,而不能用中学的距离,来进行判断。


赋范空间、度量空间、线性赋范空间、线性度量空间

赋予范数或者距离的集合分别称为:赋范空间和度量空间
若在其上再加上线性结构称为:线性赋范空间和线性度量空间

那么,我们日常生活的空间可以称为赋范空间或者度量空间么?
答案是否定的因为这样的空间缺少角度的概念,从前面的定义中我们无法退出角度。所以,我们才有了接下来的内容。


内积空间

赋范空间有向量的模长,即范数。但是还缺乏一个很重要的概念——两个向量的夹角,为了克服这一缺陷,我们引入:内积
定义:


(x,y)R,:




(1);




(2)线;




(3);


则称

(x,y) 为内积

所以内积又是比范数更加具体的东西,因为范数只是到0的距离的时候多了线性性。但是内积是线性性的充分条件【A->B,B不能->A就称为A是B的充分条件;类似的,B->A,A不能->B,则称A是B的必要条件】
举个栗子:
我们可以把内积定义为:(x,y)=Ni=1xiyi
也可以定义为:(f,g)=0f(x)g(y)dx

所以:内积可导出范数||x||2=(x,x);
在线性空间上定义内积;其空间称为内积空间;
内积可在空间中建立 欧几里得空间学,例如交角,垂直和投影等,故习惯上称其为欧几里得空间。

所以,我们平日中生活的空间就是欧几里得空间

接下来,我们看几个听起来似乎很牛逼哄哄的东西


+Hilbert




线+Banach


那么什么是完备性呢?

简单的说就是空间在极限运算中,取极限不能跑出去。所以,显然有理数集,无理数集不具有完备性。
实数集具有完备性


拓扑空间

我们向更加抽象的地方走。
欧几里得几何学需要内积,但连续的概念不需要内积,甚至不需要距离。
例如:社交圈的描述;学号的指定是“连续”的;
所以所谓的拓扑空间实际上就是个圈子。

总结:任何空间,你永远问两件事:1.元素是什么 2.规则是什么;知道这两个就知道怎么描述一个空间。

所以最后的总结:
范数可以定义为“强化”了的距离;
内积是较距离和范数有更多内涵;
拓扑是“弱化”了的距离;

上海交通大学公开课:数学之旅 的笔记
自己写给自己看的,逻辑上不一定很连贯,如果有看的不清楚的地方,建议观看原版视频,链接如下:

Reference: http://open.163.com/movie/2013/3/T/0/M8PTB0GHI_M8PTBUHT0.html


推荐阅读
  • 【线段树】  本质是二叉树,每个节点表示一个区间[L,R],设m(R-L+1)2(该处结果向下取整)左孩子区间为[L,m],右孩子区间为[m ... [详细]
  • 本文介绍了如何查看PHP网站及其源码的方法,包括环境搭建、本地测试、源码查看和在线查找等步骤。 ... [详细]
  • 本文介绍了Go语言中正则表达式的基本使用方法,并提供了一些实用的示例代码。 ... [详细]
  • 本文介绍了如何使用Python爬取妙笔阁小说网仙侠系列中所有小说的信息,并将其保存为TXT和CSV格式。主要内容包括如何构造请求头以避免被网站封禁,以及如何利用XPath解析HTML并提取所需信息。 ... [详细]
  • 本文详细探讨了使用Python3编写爬虫时如何应对网站的反爬虫机制,通过实例讲解了如何模拟浏览器访问,帮助读者更好地理解和应用相关技术。 ... [详细]
  • 周排行与月排行榜开发总结
    本文详细介绍了如何在PHP中实现周排行和月排行榜的开发,包括数据库设计、数据记录和查询方法。涉及的知识点包括MySQL的GROUP BY、WEEK和MONTH函数。 ... [详细]
  • 本文介绍了 Go 语言中的高性能、可扩展、轻量级 Web 框架 Echo。Echo 框架简单易用,仅需几行代码即可启动一个高性能 HTTP 服务。 ... [详细]
  • WCF类型共享的最佳实践
    在使用WCF服务时,经常会遇到同一个实体类型在不同服务中被生成为不同版本的问题。本文将介绍几种有效的类型共享方法,以解决这一常见问题。 ... [详细]
  • Cookie学习小结
    Cookie学习小结 ... [详细]
  • 本文将深入探讨 iOS 中的 Grand Central Dispatch (GCD),并介绍如何利用 GCD 进行高效多线程编程。如果你对线程的基本概念还不熟悉,建议先阅读相关基础资料。 ... [详细]
  • python模块之正则
    re模块可以读懂你写的正则表达式根据你写的表达式去执行任务用re去操作正则正则表达式使用一些规则来检测一些字符串是否符合个人要求,从一段字符串中找到符合要求的内容。在 ... [详细]
  • 本文详细介绍了 Spark 中的弹性分布式数据集(RDD)及其常见的操作方法,包括 union、intersection、cartesian、subtract、join、cogroup 等转换操作,以及 count、collect、reduce、take、foreach、first、saveAsTextFile 等行动操作。 ... [详细]
  • 蒜头君的倒水问题(矩阵快速幂优化)
    蒜头君将两杯热水分别倒入两个杯子中,每杯水的初始量分别为a毫升和b毫升。为了使水冷却,蒜头君采用了一种特殊的方式,即每次将第一杯中的x%的水倒入第二杯,同时将第二杯中的y%的水倒入第一杯。这种操作会重复进行k次,最终求出两杯水中各自的水量。 ... [详细]
  • Nacos 0.3 数据持久化详解与实践
    本文详细介绍了如何将 Nacos 0.3 的数据持久化到 MySQL 数据库,并提供了具体的步骤和注意事项。 ... [详细]
  • 本文介绍了如何在Python中使用插值方法将不同分辨率的数据统一到相同的分辨率。 ... [详细]
author-avatar
惠君宛峰6
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有