热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

ResNet网络解决的一些事

ResNet主要解决了网络退化以及梯度消失爆炸这两个主要问题,使得网络可以通过加深提高准确率~深度卷积网络自然的整合了低中高不同层次的特征,特征的层次可

ResNet主要解决了网络退化以及梯度消失/爆炸这两个主要问题,使得网络可以通过加深提高准确率~


深度卷积网络自然的整合了低中高不同层次的特征,特征的层次可以靠加深网络的层次来丰富。从而,在构建卷积网络时,网络的深度越高,可抽取的特征层次就越丰富。所以一般我们会倾向于使用更深层次的网络结构,以便取得更高层次的特征。但是在使用深层次的网络结构时我们会遇到两个问题,梯度消失/爆炸问题和网络退化的问题。


  • 当使用更深层的网络时,会发生梯度消失/爆炸问题,这个问题很大程度通过标准的初始化和正则化层来基本解决,这样可以确保几十层的网络能够收敛,但是随着网络层数的增加,梯度消失或者爆炸的问题仍然存在。

  • 还有一个问题就是网络的退化,如下图所示,假设已经有了一个最优化的网络结构(图左),是8层。当我们设计网络结构的时候,我们并不知道具体多少层次的网络时最优化的网络结构,假设设计了14层网络结构(图右)。那么多出来的6层其实是冗余的,我们希望训练网络的过程中,模型能够自己训练这6层(红色方框)为恒等映射,也就是经过这层时的输入与输出完全一样。但是往往模型很难将这6层恒等映射的参数学习正确,那么就一定会不比最优化的8层网络结构性能好,这就是随着网络深度增加,模型会产生退化现象。它不是由过拟合产生的,而是由冗余的网络层学习了不是恒等映射的参数造成的。

 

ResNet简介

ResNet是在2015年有何凯明,张翔宇,任少卿,孙剑共同提出的,ResNet使用了一个新的思想,ResNet的思想是假设我们涉及一个网络层,存在最优化的网络层次,那么往往我们设计的深层次网络是有很多网络层为冗余层的。那么我们希望这些冗余层能够完成恒等映射,保证经过该恒等层的输入和输出完全相同。具体哪些层是恒等层,这个会有网络训练的时候自己判断出来。将原网络的几层改成一个残差块,残差块的具体构造如下图所示:

 

可以看到X是这一层残差块的输入,也称作F(x)为残差,x为输入值,F(X)是经过第一层线性变化并激活后的输出,该图表示在残差网络中,第二层进行线性变化之后激活之前,F(x)加入了这一层输入值X,然后再进行激活后输出。在第二层输出值激活前加入X,这条路径称作shortcut连接。

ResNet解决深度网络瓶颈的魔力


  • 网络退化问题的解决:

我们发现,假设该层是冗余的,在引入ResNet之前,我们想让该层学习到的参数能够满足h(x)=x,即输入是x,经过该冗余层后,输出仍然为x。但是可以看见,要想学习h(x)=x恒等映射时的这层参数时比较困难的。ResNet想到避免去学习该层恒等映射的参数,使用了如上图的结构,让h(x)=F(x)+x;这里的F(x)我们称作残差项,我们发现,要想让该冗余层能够恒等映射,我们只需要学习F(x)=0。学习F(x)=0比学习h(x)=x要简单,因为一般每层网络中的参数初始化偏向于0,这样在相比于更新该网络层的参数来学习h(x)=x,该冗余层学习F(x)=0的更新参数能够更快收敛,如图所示:

 

假设该曾网络只经过线性变换,没有bias也没有激活函数。我们发现因为随机初始化权重一般偏向于0,那么经过该网络的输出值为[0.6 0.6],很明显会更接近与[0 0],而不是[2 1],相比与学习h(x)=x,模型要更快到学习F(x)=0。

并且ReLU能够将负数激活为0,过滤了负数的线性变化,也能够更快的使得F(x)=0。这样当网络自己决定哪些网络层为冗余层时,使用ResNet的网络很大程度上解决了学习恒等映射的问题,用学习残差F(x)=0更新该冗余层的参数来代替学习h(x)=x更新冗余层的参数。

这样当网络自行决定了哪些层为冗余层后,通过学习残差F(x)=0来让该层网络恒等映射上一层的输入,使得有了这些冗余层的网络效果与没有这些冗余层的网络效果相同,这样很大程度上解决了网络的退化问题。


  • 梯度消失或梯度爆炸问题的解决:

我们发现很深的网络层,由于参数初始化一般更靠近0,这样在训练的过程中更新浅层网络的参数时,很容易随着网络的深入而导致梯度消失,浅层的参数无法更新。

 

可以看到,假设现在需要更新b1,w2,w3,w4参数因为随机初始化偏向于0,通过链式求导我们会发现,w1w2w3相乘会得到更加接近于0的数,那么所求的这个b1的梯度就接近于0,也就产生了梯度消失的现象。

ResNet最终更新某一个节点的参数时,由于h(x)=F(x)+x,由于链式求导后的结果如下图所示,不管括号内右边部分的求导参数有多小,因为左边的1的存在,并且将原来的链式求导中的连乘变成了连加状态(正确?),都能保证该节点参数更新不会发生梯度消失或梯度爆炸现象。

 

这样ResNet在解决了阻碍更深层次网络优化问题的两个重要问题后,ResNet就能训练更深层次几百层乃至几千层的网络并取得更高的精确度了。

下边是ResNet的网络结构图:

 

 

 

左图是ResNet34,右图是ResNet50/101/152。这一个模块称作building block,右图称之为bottleneck design。在面对50,101,152层的深层次网络,意味着有很大的计算量,因此这里使用11卷积先将输入进行降维,然后再经过33卷积后再用11卷积进行升维。使用11卷积的好处是大大降低参数量计算量。

总结

通过上述的学习,你应该知道了,现如今大家普遍认为更好的网络是建立在更宽更深的网络基础上,当你需要设计一个深度网络结构时,你永远不知道最优的网络层次结构是多少层,一旦你设计的很深入了,那势必会有很多冗余层,这些冗余层一旦没有成功学习恒等变换h(x)=x,那就会影响网络的预测性能,不会比浅层的网络学习效果好从而产生退化问题。

ResNet的过人之处,是他很大程度上解决了当今深度网络头疼的网络退化问题和梯度消失问题。使用残差网络结构h(x)=F(x)+x代替原来的没有shortcut连接的h(x)=x,这样更新冗余层的参数时需要学习F(x)=0比学习h(x)=x要容易得多。而shortcut连接的结构也保证了反向传播更新参数时,很难有梯度为0的现象发生,不会导致梯度消失。

这样,ResNet的构建,使我们更朝着符合我们的直觉走下去,即越深的网络对于高级抽象特征的提取和网络性能更好,不用在担心随着网络的加深发生退化问题了。

参考链接:https://baijiahao.baidu.com/s?id=1609100487339160987&wfr=spider&for=pc



作者:邓沉香
链接:https://www.jianshu.com/p/ad6b07fe3215
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。


推荐阅读
  • 本文详细介绍了 Dockerfile 的编写方法及其在网络配置中的应用,涵盖基础指令、镜像构建与发布流程,并深入探讨了 Docker 的默认网络、容器互联及自定义网络的实现。 ... [详细]
  • 深入解析 Spring Security 用户认证机制
    本文将详细介绍 Spring Security 中用户登录认证的核心流程,重点分析 AbstractAuthenticationProcessingFilter 和 AuthenticationManager 的工作原理。通过理解这些组件的实现,读者可以更好地掌握 Spring Security 的认证机制。 ... [详细]
  • 探讨了小型企业在构建安全网络和软件时所面临的挑战和机遇。本文介绍了如何通过合理的方法和工具,确保小型企业能够有效提升其软件的安全性,从而保护客户数据并增强市场竞争力。 ... [详细]
  • 本文介绍如何在Linux Mint系统上搭建Rust开发环境,包括安装IntelliJ IDEA、Rust工具链及必要的插件。通过详细步骤,帮助开发者快速上手。 ... [详细]
  • Startup 类配置服务和应用的请求管道。Startup类ASP.NETCore应用使用 Startup 类,按照约定命名为 Startup。 Startup 类:可选择性地包括 ... [详细]
  • JavaScript中的数组是数据集合的核心结构之一,内置了多种实用的方法。掌握这些方法不仅能提高开发效率,还能显著提升代码的质量和可读性。本文将详细介绍数组的创建方式及常见操作方法。 ... [详细]
  • Panabit应用层流量管理解决方案
    Panabit是一款国内领先的应用层流量管理解决方案,提供高度开放且免费的专业服务,尤其擅长P2P应用的精准识别与高效控制。截至2009年3月25日,该系统已实现对多种网络应用的全面支持,有效提升了网络资源的利用效率和安全性。 ... [详细]
  • CSWS_E_ROB深度估计方法
    论文链接:https:arxiv.orgpdf1708.02287.pdf正文翻译概述……首先,我们把深度估计看做一种多类别的密集标记任务,然后与基于公式的 ... [详细]
  • 本文介绍如何从字符串中移除大写、小写、特殊、数字和非数字字符,并提供了多种编程语言的实现示例。 ... [详细]
  • 本文探讨了如何在Hive(基于Hadoop)环境中编写类似SQL的语句,以去除字段中的空格。特别是在处理邮政编码等数据时,去除特定位置的空格是常见的需求。 ... [详细]
  • java文本编辑器,java文本编辑器设计思路
    java文本编辑器,java文本编辑器设计思路 ... [详细]
  • JMeter接口关联与数据提取:正则表达式和JSON Extractor的使用
    在使用JMeter进行接口测试时,常常需要从前一个接口的响应中提取数据并应用于后续请求。本文将详细介绍如何利用正则表达式提取器(Regular Expression Extractor)和JSON Extractor来实现这一需求。 ... [详细]
  • 在启用分层编译的情况下,即时编译器(JIT)的触发条件涉及多个因素,包括方法调用频率、代码复杂度和运行时性能数据。本文将详细解析这些条件,并探讨分层编译如何优化JVM的执行效率。 ... [详细]
  • 深入了解 Azure Standard Load Balancer 的核心功能与应用场景
        Azure的负载均衡器就不需要多说了,属于很基础的组件了,各个云的LB功能其实也不太一样,Azure的4层LB属于相对来说功能比较基础的,不过好处是这东西也不要钱,不过Az ... [详细]
  • 中文分词_中文分词技术小结几大分词引擎的介绍与比较
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了中文分词技术小结几大分词引擎的介绍与比较相关的知识,希望对你有一定的参考价值。笔者想说:觉得英文与中文分词有很大的区别, ... [详细]
author-avatar
哈哈哈哈哈咩咩
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有