1.tf中的循环神经网络:
2.输入一个字母,预测下一个字母的例子:
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import Dense, SimpleRNN
import matplotlib.pyplot as plt
import os
# 输入。
input_word = "abcde"
w_to_id = {'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4}
id_to_onehot = {0: [1., 0., 0., 0., 0.], 1: [0., 1., 0., 0., 0.], 2: [0., 0., 1., 0., 0.], 3: [0., 0., 0., 1., 0.],4: [0., 0., 0., 0., 1.]}
x_train = [id_to_onehot[w_to_id['a']], id_to_onehot[w_to_id['b']], id_to_onehot[w_to_id['c']],id_to_onehot[w_to_id['d']], id_to_onehot[w_to_id['e']]]
y_train = [w_to_id['b'], w_to_id['c'], w_to_id['d'], w_to_id['e'], w_to_id['a']]
# 打乱:
np.random.seed(7)
np.random.shuffle(7)
np.random.seed(7)
np.random.shuffle(7)
tf.random.set_seed(7)
# 数据处理
x_train = np.reshape(x_train, (len(x_train), 1, 5))
y_train = np.array(y_train)
# 训练
model = tf.keras.Sequential([SimpleRNN(3),Dense(5, activation='softmax')])model.compile(optimizer=tf.keras.optimizers.Adam(0.01),loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),metrics=['sparse_categorical_accuracy'])checkpoint_save_path = "./checkpoint/rnn_onehot_1pre1.ckpt"if os.path.exists(checkpoint_save_path + '.index'):print('-------------load the model-----------------')model.load_weights(checkpoint_save_path)cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,save_weights_only=True,save_best_only=True,monitor='loss') # 由于fit没有给出测试集,不计算测试集准确率,根据loss,保存最优模型history = model.fit(x_train, y_train, batch_size=32, epochs=100, callbacks=[cp_callback])model.summary()# print(model.trainable_variables)
file = open('./weights.txt', 'w') # 参数提取
for v in model.trainable_variables:file.write(str(v.name) + '\n')file.write(str(v.shape) + '\n')file.write(str(v.numpy()) + '\n')
file.close()############################################### show ################################################ 显示训练集和验证集的acc和loss曲线
acc = history.history['sparse_categorical_accuracy']
loss = history.history['loss']plt.subplot(1, 2, 1)
plt.plot(acc, label='Training Accuracy')
plt.title('Training Accuracy')
plt.legend()plt.subplot(1, 2, 2)
plt.plot(loss, label='Training Loss')
plt.title('Training Loss')
plt.legend()
plt.show()############### predict #############preNum = int(input("input the number of test alphabet:"))
for i in range(preNum):alphabet1 = input("input test alphabet:")alphabet = [id_to_onehot[w_to_id[alphabet1]]]# 使alphabet符合SimpleRNN输入要求:[送入样本数, 循环核时间展开步数, 每个时间步输入特征个数]。此处验证效果送入了1个样本,送入样本数为1;输入1个字母出结果,所以循环核时间展开步数为1; 表示为独热码有5个输入特征,每个时间步输入特征个数为5alphabet = np.reshape(alphabet, (1, 1, 5))result = model.predict([alphabet])pred = tf.argmax(result, axis=1)pred = int(pred)tf.print(alphabet1 + '->' + input_word[pred])
3.输入4个字母,预测下一个字母的例子:
注意此时:循环核时间步展开 的大小为4.因为要输入4个了。
再注意:4个时间步不同的仅仅是ht。
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import Dense, SimpleRNN
import matplotlib.pyplot as plt
import osinput_word = "abcde"
w_to_id = {'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4} # 单词映射到数值id的词典
id_to_onehot = {0: [1., 0., 0., 0., 0.], 1: [0., 1., 0., 0., 0.], 2: [0., 0., 1., 0., 0.], 3: [0., 0., 0., 1., 0.],4: [0., 0., 0., 0., 1.]} # id编码为one-hotx_train = [[id_to_onehot[w_to_id['a']], id_to_onehot[w_to_id['b']], id_to_onehot[w_to_id['c']], id_to_onehot[w_to_id['d']]],[id_to_onehot[w_to_id['b']], id_to_onehot[w_to_id['c']], id_to_onehot[w_to_id['d']], id_to_onehot[w_to_id['e']]],[id_to_onehot[w_to_id['c']], id_to_onehot[w_to_id['d']], id_to_onehot[w_to_id['e']], id_to_onehot[w_to_id['a']]],[id_to_onehot[w_to_id['d']], id_to_onehot[w_to_id['e']], id_to_onehot[w_to_id['a']], id_to_onehot[w_to_id['b']]],[id_to_onehot[w_to_id['e']], id_to_onehot[w_to_id['a']], id_to_onehot[w_to_id['b']], id_to_onehot[w_to_id['c']]],
]
y_train = [w_to_id['e'], w_to_id['a'], w_to_id['b'], w_to_id['c'], w_to_id['d']]np.random.seed(7)
np.random.shuffle(x_train)
np.random.seed(7)
np.random.shuffle(y_train)
tf.random.set_seed(7)# 使x_train符合SimpleRNN输入要求:[送入样本数, 循环核时间展开步数, 每个时间步输入特征个数]。
# 此处整个数据集送入,送入样本数为len(x_train);输入4个字母出结果,循环核时间展开步数为4; 表示为独热码有5个输入特征,每个时间步输入特征个数为5
x_train = np.reshape(x_train, (len(x_train), 4, 5))
y_train = np.array(y_train)model = tf.keras.Sequential([SimpleRNN(3),Dense(5, activation='softmax')
])model.compile(optimizer=tf.keras.optimizers.Adam(0.01),loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),metrics=['sparse_categorical_accuracy'])checkpoint_save_path = "./checkpoint/rnn_onehot_4pre1.ckpt"if os.path.exists(checkpoint_save_path + '.index'):print('-------------load the model-----------------')model.load_weights(checkpoint_save_path)cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,save_weights_only=True,save_best_only=True,monitor='loss') # 由于fit没有给出测试集,不计算测试集准确率,根据loss,保存最优模型history = model.fit(x_train, y_train, batch_size=32, epochs=100, callbacks=[cp_callback])model.summary()# print(model.trainable_variables)
file = open('./weights.txt', 'w') # 参数提取
for v in model.trainable_variables:file.write(str(v.name) + '\n')file.write(str(v.shape) + '\n')file.write(str(v.numpy()) + '\n')
file.close()############################################### show ################################################ 显示训练集和验证集的acc和loss曲线
acc = history.history['sparse_categorical_accuracy']
loss = history.history['loss']plt.subplot(1, 2, 1)
plt.plot(acc, label='Training Accuracy')
plt.title('Training Accuracy')
plt.legend()plt.subplot(1, 2, 2)
plt.plot(loss, label='Training Loss')
plt.title('Training Loss')
plt.legend()
plt.show()############### predict #############preNum = int(input("input the number of test alphabet:"))
for i in range(preNum):alphabet1 = input("input test alphabet:")alphabet = [id_to_onehot[w_to_id[a]] for a in alphabet1]# 使alphabet符合SimpleRNN输入要求:[送入样本数, 循环核时间展开步数, 每个时间步输入特征个数]。此处验证效果送入了1个样本,送入样本数为1;输入4个字母出结果,所以循环核时间展开步数为4; 表示为独热码有5个输入特征,每个时间步输入特征个数为5alphabet = np.reshape(alphabet, (1, 4, 5))result = model.predict([alphabet])pred = tf.argmax(result, axis=1)pred = int(pred)tf.print(alphabet1 + '->' + input_word[pred])
4.
5.
6.
7.
8.
9.
10.