热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

Redis面试常见问答

1.什么是缓存雪崩?怎么解决?通常,我们会使用缓存用于缓冲对DB的冲击,如果缓存宕机,所有请求将直接打在DB,造成DB宕机——从而导致整个系统宕机。如何解决呢?2种策略(同时使用)


1. 什么是缓存雪崩?怎么解决?

通常,我们会使用缓存用于缓冲对 DB 的冲击,如果缓存宕机,所有请求将直接打在 DB,造成 DB 宕机——从而导致整个系统宕机。


如何解决呢?

2 种策略(同时使用):


  • 对缓存做高可用,防止缓存宕机

  • 使用断路器,如果缓存宕机,为了防止系统全部宕机,限制部分流量进入 DB,保证部分可用,其余的请求返回断路器的默认值。


2. 什么是缓存穿透?怎么解决?

解释 1:缓存查询一个没有的 key,同时数据库也没有,如果黑客大量的使用这种方式,那么就会导致 DB 宕机。

解决方案:我们可以使用一个默认值来防止,例如,当访问一个不存在的 key,然后再去访问数据库,还是没有,那么就在缓存里放一个占位符,下次来的时候,检查这个占位符,如果发生时占位符,就不去数据库查询了,防止 DB 宕机。

解释 2:大量请求查询一个刚刚失效的 key,导致 DB 压力倍增,可能导致宕机,但实际上,查询的都是相同的数据。

解决方案:可以在这些请求代码加上双重检查锁。但是那个阶段的请求会变慢。不过总比 DB 宕机好。


3. 什么是缓存并发竞争?怎么解决?

解释:多个客户端写一个 key,如果顺序错了,数据就不对了。但是顺序我们无法控制。

解决方案:使用分布式锁,例如 zk,同时加入数据的时间戳。同一时刻,只有抢到锁的客户端才能写入,同时,写入时,比较当前数据的时间戳和缓存中数据的时间戳。


4.什么是缓存和数据库双写不一致?怎么解决?

解释:连续写数据库和缓存,但是操作期间,出现并发了,数据不一致了。

通常,更新缓存和数据库有以下几种顺序:


  • 先更新数据库,再更新缓存。

  • 先删缓存,再更新数据库。

  • 先更新数据库,再删除缓存。

三种方式的优劣来看一下:

先更新数据库,再更新缓存。

这么做的问题是:当有 2 个请求同时更新数据,那么如果不使用分布式锁,将无法控制最后缓存的值到底是多少。也就是并发写的时候有问题。

先删缓存,再更新数据库。

这么做的问题:如果在删除缓存后,有客户端读数据,将可能读到旧数据,并有可能设置到缓存中,导致缓存中的数据一直是老数据。

有 2 种解决方案:


  • 使用“双删”,即删更删,最后一步的删除作为异步操作,就是防止有客户端读取的时候设置了旧值。

  • 使用队列,当这个 key 不存在时,将其放入队列,串行执行,必须等到更新数据库完毕才能读取数据。

总的来讲,比较麻烦。

先更新数据库,再删除缓存

这个实际是常用的方案,但是有很多人不知道,这里介绍一下,这个叫 Cache Aside Pattern,老外发明的。如果先更新数据库,再删除缓存,那么就会出现更新数据库之前有瞬间数据不是很及时。

同时,如果在更新之前,缓存刚好失效了,读客户端有可能读到旧值,然后在写客户端删除结束后再次设置了旧值,非常巧合的情况。

有 2 个前提条件:缓存在写之前的时候失效,同时,在写客户度删除操作结束后,放置旧数据 —— 也就是读比写慢。设置有的写操作还会锁表。

所以,这个很难出现,但是如果出现了怎么办?使用双删!!!记录更新期间有没有客户端读数据库,如果有,在更新完数据库之后,执行延迟删除。

还有一种可能,如果执行更新数据库,准备执行删除缓存时,服务挂了,执行删除失败怎么办???

这就坑了!!!不过可以通过订阅数据库的 binlog 来删除。



推荐阅读
  • 本文深入探讨了MySQL中常见的面试问题,包括事务隔离级别、存储引擎选择、索引结构及优化等关键知识点。通过详细解析,帮助读者在面对BAT等大厂面试时更加从容。 ... [详细]
  • FinOps 与 Serverless 的结合:破解云成本难题
    本文探讨了如何通过 FinOps 实践优化 Serverless 应用的成本管理,提出了首个 Serverless 函数总成本估计模型,并分享了多种有效的成本优化策略。 ... [详细]
  • 深入解析Redis内存对象模型
    本文详细介绍了Redis内存对象模型的关键知识点,包括内存统计、内存分配、数据存储细节及优化策略。通过实际案例和专业分析,帮助读者全面理解Redis内存管理机制。 ... [详细]
  • 本文作者分享了在阿里巴巴获得实习offer的经历,包括五轮面试的详细内容和经验总结。其中四轮为技术面试,一轮为HR面试,涵盖了大量的Java技术和项目实践经验。 ... [详细]
  • Netflix利用Druid实现高效实时数据分析
    本文探讨了全球领先的在线娱乐公司Netflix如何通过采用Apache Druid,实现了高效的数据采集、处理和实时分析,从而显著提升了用户体验和业务决策的准确性。文章详细介绍了Netflix在系统架构、数据摄取、管理和查询方面的实践,并展示了Druid在大规模数据处理中的卓越性能。 ... [详细]
  • 优化Flask应用的并发处理:解决Mysql连接过多问题
    本文探讨了在Flask应用中通过优化后端架构来应对高并发请求,特别是针对Mysql 'too many connections' 错误的解决方案。我们将介绍如何利用Redis缓存、Gunicorn多进程和Celery异步任务队列来提升系统的性能和稳定性。 ... [详细]
  • 本文深入探讨了 Redis 的两种持久化方式——RDB 快照和 AOF 日志。详细介绍了它们的工作原理、配置方法以及各自的优缺点,帮助读者根据具体需求选择合适的持久化方案。 ... [详细]
  • 本文探讨了如何在日常工作中通过优化效率和深入研究核心技术,将技术和知识转化为实际收益。文章结合个人经验,分享了提高工作效率、掌握高价值技能以及选择合适工作环境的方法,帮助读者更好地实现技术变现。 ... [详细]
  • 本文探讨了哪些数据库支持队列式的写入操作(即一个键对应一个队列,数据可以连续入队),并且具备良好的持久化特性。这类需求通常出现在需要高效处理和存储大量有序数据的场景中。 ... [详细]
  • 目录一、salt-job管理#job存放数据目录#缓存时间设置#Others二、returns模块配置job数据入库#配置returns返回值信息#mysql安全设置#创建模块相关 ... [详细]
  • 本文详细介绍了优化DB2数据库性能的多种方法,涵盖统计信息更新、缓冲池调整、日志缓冲区配置、应用程序堆大小设置、排序堆参数调整、代理程序管理、锁机制优化、活动应用程序限制、页清除程序配置、I/O服务器数量设定以及编入组提交数调整等方面。通过这些技术手段,可以显著提升数据库的运行效率和响应速度。 ... [详细]
  • 在项目中使用 Redis 时,了解其不同架构模式(如单节点、主从复制、哨兵模式和集群)对于确保系统的高可用性和扩展性至关重要。本文将详细探讨这些模式的特点和应用场景。 ... [详细]
  • 深入理解一致性哈希算法及其应用
    本文详细介绍了分布式系统中的一致性哈希算法,探讨其原理、优势及应用场景,帮助读者全面掌握这一关键技术。 ... [详细]
  • 本文探讨了Java编程的核心要素,特别是其面向对象的特性,并详细介绍了Java虚拟机、类装载器体系结构、Java类文件和Java API等关键技术。这些技术使得Java成为一种功能强大且易于使用的编程语言。 ... [详细]
  • 本文详细介绍了如何在 MySQL 中授予和撤销用户权限。包括创建用户、赋予不同级别的权限(如表级、数据库级、服务器级)、使权限生效、查看用户权限以及撤销权限的方法。此外,还提供了常见错误及其解决方法。 ... [详细]
author-avatar
水水2502919973
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有