原文:https://www . geeksforgeeks . org/迭代程序查找根节点距离/
给定二叉树的根和其中的一个键 x,求给定键到根节点的距离。距离是指两个节点之间的边数。
示例:
Input : x = 45,
5 is Root of below tree
5
/ \
10 15
/ \ / \
20 25 30 35
\
45
Output : Distance = 3
There are three edges on path
from root to 45.
For more understanding of question,
in above tree distance of 35 is two
and distance of 10 is 1.
相关问题 : 求节点距根距离的递归程序。
迭代方法:
下面是上述方法的实现:
// C++ program to find distance of a given
// node from root.
#include
using namespace std;
// A Binary Tree Node
struct Node {
int data;
Node *left, *right;
};
// A utility function to create a new Binary
// Tree Node
Node* newNode(int item)
{
Node* temp = new Node;
temp->data = item;
temp->left = temp->right = NULL;
return temp;
}
/* Function to find distance of a node from root
* root : root of the Tree
* key : data whose distance to be calculated
*/
int findDistance(Node* root, int key)
{
// base case
if (root == NULL) {
return -1;
}
// If the key is present at root,
// distance is zero
if (root->data == key)
return 0;
// Iterating through tree using BFS
queue
// pushing root to the queue
q.push(root);
// pushing marker to the queue
q.push(NULL);
// Variable to store count of level
int levelCount = 0;
while (!q.empty()) {
Node* temp = q.front();
q.pop();
// if node is marker, push marker to queue
// else, push left and right (if exists)
if (temp == NULL && !q.empty()) {
q.push(NULL);
// Increment levelCount, while moving
// to new level
levelCount++;
}
else if (temp != NULL) {
// If node at current level is Key,
// return levelCount
if (temp->data == key)
return levelCount;
if (temp->left)
q.push(temp->left);
if (temp->right)
q.push(temp->right);
}
}
// If key is not found
return -1;
}
// Driver Code
int main()
{
Node* root = newNode(5);
root->left = newNode(10);
root->right = newNode(15);
root->left->left = newNode(20);
root->left->right = newNode(25);
root->left->right->right = newNode(45);
root->right->left = newNode(30);
root->right->right = newNode(35);
cout <
}
// Java program to find distance of a given
// node from root.
import java.util.*;
class GFG
{
// A Binary Tree Node
static class Node
{
int data;
Node left, right;
};
// A utility function to create a new Binary
// Tree Node
static Node newNode(int item)
{
Node temp = new Node();
temp.data = item;
temp.left = temp.right = null;
return temp;
}
/* Function to find distance of a node from root
* root : root of the Tree
* key : data whose distance to be calculated
*/
static int findDistance(Node root, int key)
{
// base case
if (root == null)
{
return -1;
}
// If the key is present at root,
// distance is zero
if (root.data == key)
return 0;
// Iterating through tree using BFS
Queue
// adding root to the queue
q.add(root);
// adding marker to the queue
q.add(null);
// Variable to store count of level
int levelCount = 0;
while (!q.isEmpty())
{
Node temp = q.peek();
q.remove();
// if node is marker, push marker to queue
// else, push left and right (if exists)
if (temp == null && !q.isEmpty())
{
q.add(null);
// Increment levelCount, while moving
// to new level
levelCount++;
}
else if (temp != null)
{
// If node at current level is Key,
// return levelCount
if (temp.data == key)
return levelCount;
if (temp.left != null)
q.add(temp.left);
if (temp.right != null)
q.add(temp.right);
}
}
// If key is not found
return -1;
}
// Driver Code
public static void main(String[] args)
{
Node root = newNode(5);
root.left = newNode(10);
root.right = newNode(15);
root.left.left = newNode(20);
root.left.right = newNode(25);
root.left.right.right = newNode(45);
root.right.left = newNode(30);
root.right.right = newNode(35);
System.out.println(findDistance(root, 45));
}
}
// This code is contributed by Rajput-Ji
# Python program to find distance of a given
# node from root.
from collections import deque
# A tree binary node
class Node:
def __init__(self, data):
self.data = data
self.left = None
self.right = None
# Function to find distance of a node from root
# root : root of the Tree
# key : data whose distance to be calculated
def findDistance(root: Node, key: int) -> int:
# base case
if root is None:
return -1
# If the key is present at root,
# distance is zero
if root.data == key:
return 0
# Iterating through tree using BFS
q = deque()
# pushing root to the queue
q.append(root)
# pushing marker to the queue
q.append(None)
# Variable to store count of level
levelCount = 0
while q:
temp = q[0]
q.popleft()
# if node is marker, push marker to queue
# else, push left and right (if exists)
if temp is None and q:
q.append(None)
# Increment levelCount, while moving
# to new level
levelCount += 1
elif temp:
# If node at current level is Key,
# return levelCount
if temp.data == key:
return levelCount
if temp.left:
q.append(temp.left)
if temp.right:
q.append(temp.right)
# If key is not found
return -1
# Driver Code
if __name__ == "__main__":
root = Node(5)
root.left = Node(10)
root.right = Node(15)
root.left.left = Node(20)
root.left.right = Node(25)
root.left.right.right = Node(45)
root.right.left = Node(30)
root.right.right = Node(35)
print(findDistance(root, 45))
# This code is contributed by
# sanjeev2552
// C# program to find distance of a given
// node from root.
using System;
using System.Collections.Generic;
class GFG
{
// A Binary Tree Node
class Node
{
public int data;
public Node left, right;
};
// A utility function to create a new Binary
// Tree Node
static Node newNode(int item)
{
Node temp = new Node();
temp.data = item;
temp.left = temp.right = null;
return temp;
}
/* Function to find distance of a node from root
* root : root of the Tree
* key : data whose distance to be calculated*/
static int findDistance(Node root, int key)
{
// base case
if (root == null)
{
return -1;
}
// If the key is present at root,
// distance is zero
if (root.data == key)
return 0;
// Iterating through tree using BFS
Queue
// adding root to the queue
q.Enqueue(root);
// adding marker to the queue
q.Enqueue(null);
// Variable to store count of level
int levelCount = 0;
while (q.Count!=0)
{
Node temp = q.Peek();
q.Dequeue();
// if node is marker, push marker to queue
// else, push left and right (if exists)
if (temp == null && q.Count!=0)
{
q.Enqueue(null);
// Increment levelCount, while moving
// to new level
levelCount++;
}
else if (temp != null)
{
// If node at current level is Key,
// return levelCount
if (temp.data == key)
return levelCount;
if (temp.left != null)
q.Enqueue(temp.left);
if (temp.right != null)
q.Enqueue(temp.right);
}
}
// If key is not found
return -1;
}
// Driver Code
public static void Main(String[] args)
{
Node root = newNode(5);
root.left = newNode(10);
root.right = newNode(15);
root.left.left = newNode(20);
root.left.right = newNode(25);
root.left.right.right = newNode(45);
root.right.left = newNode(30);
root.right.right = newNode(35);
Console.WriteLine(findDistance(root, 45));
}
}
// This code is contributed by Princi Singh
Output:
3