热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

求二叉树的中值数组

求二叉树的中值数组原文:https://www.geesfo

求二叉树的中值数组

原文:https://www . geesforgeks . org/find-中值数组换二叉树/

先决条件: 树遍历(有序、前序和后序)、中值
给定一棵具有整数节点的二叉树,任务是为树的前序、后序和有序遍历中的每个位置找到中值。

中值数组是借助于树的前序、后序和有序遍历形成的数组,这样
med[i] =中值(前序[i]、有序[i]、有序[i])

例:

Input: Tree =
1
/ \
2 3
/ \
4 5
Output: {4, 2, 4, 3, 3}
Explanation:
Preorder traversal = {1 2 4 5 3}
Inorder traversal = {4 2 5 1 3}
Postorder traversal = {4 5 2 3 1}
median[0] = median(1, 4, 4) = 4
median[1] = median(2, 2, 5) = 2
median[2] = median(4, 5, 2) = 4
median[3] = median(5, 1, 3) = 3
median[4] = median(3, 3, 1) = 3
Hence, Median array = {4 2 4 3 3}
Input: Tree =
25
/ \
20 30
/ \ / \
18 22 24 32
Output: 18 20 20 24 30 30 32

进场:


  • 首先,找到给定二叉树的前序、后序和有序遍历,并将它们分别存储在向量中。

  • 现在,对于从 0 到 N 的每个位置,将每个遍历数组中该位置的值插入一个向量。矢量大小为 3N。

  • 最后,对这个向量进行排序,这个位置的中位数由第二元素给出。在这个向量中,它有 3N 个元素。因此在排序之后,中间的元素,第二个元素,每 3 个元素给出一个中间值。

以下是上述方法的实现:

卡片打印处理机(Card Print Processor 的缩写)

// C++ program to Obtain the median
// array for the preorder, postorder
// and inorder traversal of a binary tree
#include
using namespace std;
// A binary tree node has data,
// a pointer to the left child
// and a pointer to the right child
struct Node {
    int data;
    struct Node *left, *right;
    Node(int data)
    {
        this->data = data;
        left = right = NULL;
    }
};
// Postorder traversal
void Postorder(
    struct Node* node,
    vector& postorder)
{
    if (node == NULL)
        return;
    // First recur on left subtree
    Postorder(node->left, postorder);
    // then recur on right subtree
    Postorder(node->right, postorder);
    // now deal with the node
    postorder.push_back(node->data);
}
// Inorder traversal
void Inorder(
    struct Node* node,
    vector& inorder)
{
    if (node == NULL)
        return;
    // First recur on left child
    Inorder(node->left, inorder);
    // then print the data of node
    inorder.push_back(node->data);
    // now recur on right child
    Inorder(node->right, inorder);
}
// Preorder traversal
void Preorder(
    struct Node* node,
    vector& preorder)
{
    if (node == NULL)
        return;
    // First print data of node
    preorder.push_back(node->data);
    // then recur on left subtree
    Preorder(node->left, preorder);
    // now recur on right subtree
    Preorder(node->right, preorder);
}
// Function to print the any array
void PrintArray(vector median)
{
    for (int i = 0;
         i         cout <    return;
}
// Function to create and print
// the Median array
void MedianArray(struct Node* node)
{
    // Vector to store
    // the median values
    vector median;
    if (node == NULL)
        return;
    vector preorder,
        postorder,
        inorder;
    // Traverse the tree
    Postorder(node, postorder);
    Inorder(node, inorder);
    Preorder(node, preorder);
    int n = preorder.size();
    for (int i = 0; i         // Temporary vector to sort
        // the three values
        vector temp;
        // Insert the values at ith index
        // for each traversal into temp
        temp.push_back(postorder[i]);
        temp.push_back(inorder[i]);
        temp.push_back(preorder[i]);
        // Sort the temp vector to
        // find the median
        sort(temp.begin(), temp.end());
        // Insert the middle value in
        // temp into the median vector
        median.push_back(temp[1]);
    }
    PrintArray(median);
    return;
}
// Driver Code
int main()
{
    struct Node* root = new Node(1);
    root->left = new Node(2);
    root->right = new Node(3);
    root->left->left = new Node(4);
    root->left->right = new Node(5);
    MedianArray(root);
    return 0;
}

Java 语言(一种计算机语言,尤用于创建网站)

// Java program to Obtain the median
// array for the preorder, postorder
// and inorder traversal of a binary tree
import java.io.*;
import java.util.*;
// A binary tree node has data,
// a pointer to the left child
// and a pointer to the right child
class Node
{
  int data;
  Node left,right;
  Node(int item)
  {
    data = item;
    left = right = null;
  }
}
class Tree {
  public static Vector postorder = new Vector();
  public static Vector inorder = new Vector();
  public static Vector preorder = new Vector();
  public static Node root;
  // Postorder traversal
  public static void Postorder(Node node)
  {
    if(node == null)
    {
      return;
    }
    // First recur on left subtree
    Postorder(node.left);
    // then recur on right subtree
    Postorder(node.right);
    // now deal with the node
    postorder.add(node.data);
  }
  // Inorder traversal
  public static void Inorder(Node node)
  {
    if(node == null)
    {
      return;
    }
    // First recur on left child
    Inorder(node.left);
    // then print the data of node
    inorder.add(node.data);
    // now recur on right child
    Inorder(node.right);      
  }
  // Preorder traversal
  public static void Preorder(Node node)
  {
    if(node == null)
    {
      return;
    }
    // First print data of node
    preorder.add(node.data);
    // then recur on left subtree
    Preorder(node.left);
    // now recur on right subtree
    Preorder(node.right);
  }
  // Function to print the any array    
  public static void PrintArray(Vector median)
  {
    for(int i = 0; i     {
      System.out.print(median.get(i) + " ");
    }
  }
  // Function to create and print
  // the Median array
  public static void MedianArray(Node node)
  {
    // Vector to store
    // the median values
    Vector median = new Vector();
    if(node == null)
    {
      return;
    }
    // Traverse the tree
    Postorder(node);
    Inorder(node);
    Preorder(node);
    int n = preorder.size();
    for(int i = 0; i     {
      // Temporary vector to sort
      // the three values
      Vector temp = new Vector();
      // Insert the values at ith index
      // for each traversal into temp
      temp.add(postorder.get(i));
      temp.add(inorder.get(i));
      temp.add(preorder.get(i));
      // Sort the temp vector to
      // find the median
      Collections.sort(temp);
      // Insert the middle value in
      // temp into the median vector
      median.add(temp.get(1));
    }
    PrintArray(median);
  }
  // Driver Code
  public static void main (String[] args)
  {
    Tree.root = new Node(1);
    Tree.root.left = new Node(2);
    Tree.root.right = new Node(3);
    Tree.root.left.left = new Node(4);
    Tree.root.left.right = new Node(5);
    MedianArray(root);
  }
}
// This code is contributed by avanitrachhadiya2155

Python 3

# Python3 program to Obtain the median
# array for the preorder, postorder
# and inorder traversal of a binary tree
# A binary tree node has data,
# a pointer to the left child
# and a pointer to the right child
class Node:
    def __init__(self, x):
        self.data = x
        self.left = None
        self.right = None
# Postorder traversal
def Postorder(node):
    global preorder
    if (node == None):
        return
    # First recur on left subtree
    Postorder(node.left)
    # then recur on right subtree
    Postorder(node.right)
    # now deal with the node
    postorder.append(node.data)
# Inorder traversal
def Inorder(node):
    global inorder
    if (node == None):
        return
    # First recur on left child
    Inorder(node.left)
    # then print the data of node
    inorder.append(node.data)
    # now recur on right child
    Inorder(node.right)
# Preorder traversal
def Preorder(node):
    global preorder
    if (node == None):
        return
    # First print data of node
    preorder.append(node.data)
    # then recur on left subtree
    Preorder(node.left)
    # now recur on right subtree
    Preorder(node.right)
# Function to print the any array
def PrintArray(median):
    for i in range(len(median)):
        print(median[i], end = " ")
    return
# Function to create and print
# the Median array
def MedianArray(node):
    global inorder, postorder, preorder
    # Vector to store
    # the median values
    median = []
    if (node == None):
        return
    # Traverse the tree
    Postorder(node)
    Inorder(node)
    Preorder(node)
    n = len(preorder)
    for i in range(n):
        # Temporary vector to sort
        # the three values
        temp = []
        # Insert the values at ith index
        # for each traversal into temp
        temp.append(postorder[i])
        temp.append(inorder[i])
        temp.append(preorder[i])
        # Sort the temp vector to
        # find the median
        temp = sorted(temp)
        # Insert the middle value in
        # temp into the median vector
        median.append(temp[1])
    PrintArray(median)
# Driver Code
if __name__ == '__main__':
    preorder, inorder, postorder = [], [], []
    root = Node(1)
    root.left = Node(2)
    root.right = Node(3)
    root.left.left = Node(4)
    root.left.right = Node(5)
    MedianArray(root)
# This code is contributed by mohit kumar 29

C

// C# program to Obtain the median
// array for the preorder, postorder
// and inorder traversal of a binary tree
using System;
using System.Collections.Generic;
using System.Numerics;
// A binary tree node has data,
// a pointer to the left child
// and a pointer to the right child
public class Node
{
  public int data;
  public Node left,right;
  public Node(int item)
  {
    data = item;
    left = right = null;
  }
}
public class Tree{
  static List postorder = new List();
  static List inorder = new List();
  static List preorder = new List();
  static Node root;
  // Postorder traversal
  public static void Postorder(Node node)
  {
    if(node == null)
    {
      return;
    }
    // First recur on left subtree
    Postorder(node.left);
    // then recur on right subtree
    Postorder(node.right);
    // now deal with the node
    postorder.Add(node.data);
  }
  // Inorder traversal
  public static void Inorder(Node node)
  {
    if(node == null)
    {
      return;
    }
    // First recur on left child
    Inorder(node.left);
    // then print the data of node
    inorder.Add(node.data);
    // now recur on right child
    Inorder(node.right);      
  }
  // Preorder traversal
  public static void Preorder(Node node)
  {
    if(node == null)
    {
      return;
    }
    // First print data of node
    preorder.Add(node.data);
    // then recur on left subtree
    Preorder(node.left);
    // now recur on right subtree
    Preorder(node.right);
  }
  // Function to print the any array    
  public static void PrintArray(List median)
  {
    for(int i = 0; i     {
      Console.Write(median[i] + " ");
    }
  }
  // Function to create and print
  // the Median array
  public static void MedianArray(Node node)
  {
    // Vector to store
    // the median values
    List median = new List();
    if(node == null)
    {
      return;
    }
    // Traverse the tree
    Postorder(node);
    Inorder(node);
    Preorder(node);
    int n = preorder.Count;
    for(int i = 0; i     {
      // Temporary vector to sort
      // the three values
      List temp = new List();
      // Insert the values at ith index
      // for each traversal into temp
      temp.Add(postorder[i]);
      temp.Add(inorder[i]);
      temp.Add(preorder[i]);
      // Sort the temp vector to
      // find the median
      temp.Sort();
      // Insert the middle value in
      // temp into the median vector
      median.Add(temp[1]);
    }
    PrintArray(median);
  }
  // Driver code
  static public void Main ()
  {
    Tree.root = new Node(1);
    Tree.root.left = new Node(2);
    Tree.root.right = new Node(3);
    Tree.root.left.left = new Node(4);
    Tree.root.left.right = new Node(5);
    MedianArray(root);
  }
}
// This code is contributed by rag2127

java 描述语言


Output: 

4 2 4 3 3

时间复杂度:O(N)T4】


推荐阅读
  • 扫描线三巨头 hdu1928hdu 1255  hdu 1542 [POJ 1151]
    学习链接:http:blog.csdn.netlwt36articledetails48908031学习扫描线主要学习的是一种扫描的思想,后期可以求解很 ... [详细]
  • UNP 第9章:主机名与地址转换
    本章探讨了用于在主机名和数值地址之间进行转换的函数,如gethostbyname和gethostbyaddr。此外,还介绍了getservbyname和getservbyport函数,用于在服务器名和端口号之间进行转换。 ... [详细]
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • 题目Link题目学习link1题目学习link2题目学习link3%%%受益匪浅!-----&# ... [详细]
  • Codeforces Round #566 (Div. 2) A~F个人题解
    Dashboard-CodeforcesRound#566(Div.2)-CodeforcesA.FillingShapes题意:给你一个的表格,你 ... [详细]
  • 在多线程编程环境中,线程之间共享全局变量可能导致数据竞争和不一致性。为了解决这一问题,Linux提供了线程局部存储(TLS),使每个线程可以拥有独立的变量副本,确保线程间的数据隔离与安全。 ... [详细]
  • 实体映射最强工具类:MapStruct真香 ... [详细]
  • 火星商店问题:线段树分治与持久化Trie树的应用
    本题涉及编号为1至n的火星商店,每个商店有一个永久商品价值v。操作包括每天在指定商店增加一个新商品,以及查询某段时间内某些商店中所有商品(含永久商品)与给定密码值的最大异或结果。通过线段树分治和持久化Trie树来高效解决此问题。 ... [详细]
  • C++实现经典排序算法
    本文详细介绍了七种经典的排序算法及其性能分析。每种算法的平均、最坏和最好情况的时间复杂度、辅助空间需求以及稳定性都被列出,帮助读者全面了解这些排序方法的特点。 ... [详细]
  • 题目描述:给定n个半开区间[a, b),要求使用两个互不重叠的记录器,求最多可以记录多少个区间。解决方案采用贪心算法,通过排序和遍历实现最优解。 ... [详细]
  • C++: 实现基于类的四面体体积计算
    本文介绍如何使用C++编程语言,通过定义类和方法来计算由四个三维坐标点构成的四面体体积。文中详细解释了四面体体积的数学公式,并提供了两种不同的实现方式。 ... [详细]
  • 本文详细介绍了Java中的访问器(getter)和修改器(setter),探讨了它们在保护数据完整性、增强代码可维护性方面的重要作用。通过具体示例,展示了如何正确使用这些方法来控制类属性的访问和更新。 ... [详细]
  • 本实验主要探讨了二叉排序树(BST)的基本操作,包括创建、查找和删除节点。通过具体实例和代码实现,详细介绍了如何使用递归和非递归方法进行关键字查找,并展示了删除特定节点后的树结构变化。 ... [详细]
  • andr ... [详细]
  • 网易严选Java开发面试:MySQL索引深度解析
    本文详细记录了网易严选Java开发岗位的面试经验,特别针对MySQL索引相关的技术问题进行了深入探讨。通过本文,读者可以了解面试官常问的索引问题及其背后的原理。 ... [详细]
author-avatar
啵__啵_891
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有