原文:https://www . geesforgeks . org/find-中值数组换二叉树/
先决条件: 树遍历(有序、前序和后序)、中值
给定一棵具有整数节点的二叉树,任务是为树的前序、后序和有序遍历中的每个位置找到中值。
中值数组是借助于树的前序、后序和有序遍历形成的数组,这样
med[i] =中值(前序[i]、有序[i]、有序[i])
例:
Input: Tree =
1
/ \
2 3
/ \
4 5
Output: {4, 2, 4, 3, 3}
Explanation:
Preorder traversal = {1 2 4 5 3}
Inorder traversal = {4 2 5 1 3}
Postorder traversal = {4 5 2 3 1}
median[0] = median(1, 4, 4) = 4
median[1] = median(2, 2, 5) = 2
median[2] = median(4, 5, 2) = 4
median[3] = median(5, 1, 3) = 3
median[4] = median(3, 3, 1) = 3
Hence, Median array = {4 2 4 3 3}
Input: Tree =
25
/ \
20 30
/ \ / \
18 22 24 32
Output: 18 20 20 24 30 30 32
进场:
以下是上述方法的实现:
// C++ program to Obtain the median
// array for the preorder, postorder
// and inorder traversal of a binary tree
#include
using namespace std;
// A binary tree node has data,
// a pointer to the left child
// and a pointer to the right child
struct Node {
int data;
struct Node *left, *right;
Node(int data)
{
this->data = data;
left = right = NULL;
}
};
// Postorder traversal
void Postorder(
struct Node* node,
vector
{
if (node == NULL)
return;
// First recur on left subtree
Postorder(node->left, postorder);
// then recur on right subtree
Postorder(node->right, postorder);
// now deal with the node
postorder.push_back(node->data);
}
// Inorder traversal
void Inorder(
struct Node* node,
vector
{
if (node == NULL)
return;
// First recur on left child
Inorder(node->left, inorder);
// then print the data of node
inorder.push_back(node->data);
// now recur on right child
Inorder(node->right, inorder);
}
// Preorder traversal
void Preorder(
struct Node* node,
vector
{
if (node == NULL)
return;
// First print data of node
preorder.push_back(node->data);
// then recur on left subtree
Preorder(node->left, preorder);
// now recur on right subtree
Preorder(node->right, preorder);
}
// Function to print the any array
void PrintArray(vector
{
for (int i = 0;
i
}
// Function to create and print
// the Median array
void MedianArray(struct Node* node)
{
// Vector to store
// the median values
vector
if (node == NULL)
return;
vector
postorder,
inorder;
// Traverse the tree
Postorder(node, postorder);
Inorder(node, inorder);
Preorder(node, preorder);
int n = preorder.size();
for (int i = 0; i
// the three values
vector
// Insert the values at ith index
// for each traversal into temp
temp.push_back(postorder[i]);
temp.push_back(inorder[i]);
temp.push_back(preorder[i]);
// Sort the temp vector to
// find the median
sort(temp.begin(), temp.end());
// Insert the middle value in
// temp into the median vector
median.push_back(temp[1]);
}
PrintArray(median);
return;
}
// Driver Code
int main()
{
struct Node* root = new Node(1);
root->left = new Node(2);
root->right = new Node(3);
root->left->left = new Node(4);
root->left->right = new Node(5);
MedianArray(root);
return 0;
}
// Java program to Obtain the median
// array for the preorder, postorder
// and inorder traversal of a binary tree
import java.io.*;
import java.util.*;
// A binary tree node has data,
// a pointer to the left child
// and a pointer to the right child
class Node
{
int data;
Node left,right;
Node(int item)
{
data = item;
left = right = null;
}
}
class Tree {
public static Vector
public static Vector
public static Vector
public static Node root;
// Postorder traversal
public static void Postorder(Node node)
{
if(node == null)
{
return;
}
// First recur on left subtree
Postorder(node.left);
// then recur on right subtree
Postorder(node.right);
// now deal with the node
postorder.add(node.data);
}
// Inorder traversal
public static void Inorder(Node node)
{
if(node == null)
{
return;
}
// First recur on left child
Inorder(node.left);
// then print the data of node
inorder.add(node.data);
// now recur on right child
Inorder(node.right);
}
// Preorder traversal
public static void Preorder(Node node)
{
if(node == null)
{
return;
}
// First print data of node
preorder.add(node.data);
// then recur on left subtree
Preorder(node.left);
// now recur on right subtree
Preorder(node.right);
}
// Function to print the any array
public static void PrintArray(Vector
{
for(int i = 0; i
System.out.print(median.get(i) + " ");
}
}
// Function to create and print
// the Median array
public static void MedianArray(Node node)
{
// Vector to store
// the median values
Vector
if(node == null)
{
return;
}
// Traverse the tree
Postorder(node);
Inorder(node);
Preorder(node);
int n = preorder.size();
for(int i = 0; i
// Temporary vector to sort
// the three values
Vector
// Insert the values at ith index
// for each traversal into temp
temp.add(postorder.get(i));
temp.add(inorder.get(i));
temp.add(preorder.get(i));
// Sort the temp vector to
// find the median
Collections.sort(temp);
// Insert the middle value in
// temp into the median vector
median.add(temp.get(1));
}
PrintArray(median);
}
// Driver Code
public static void main (String[] args)
{
Tree.root = new Node(1);
Tree.root.left = new Node(2);
Tree.root.right = new Node(3);
Tree.root.left.left = new Node(4);
Tree.root.left.right = new Node(5);
MedianArray(root);
}
}
// This code is contributed by avanitrachhadiya2155
# Python3 program to Obtain the median
# array for the preorder, postorder
# and inorder traversal of a binary tree
# A binary tree node has data,
# a pointer to the left child
# and a pointer to the right child
class Node:
def __init__(self, x):
self.data = x
self.left = None
self.right = None
# Postorder traversal
def Postorder(node):
global preorder
if (node == None):
return
# First recur on left subtree
Postorder(node.left)
# then recur on right subtree
Postorder(node.right)
# now deal with the node
postorder.append(node.data)
# Inorder traversal
def Inorder(node):
global inorder
if (node == None):
return
# First recur on left child
Inorder(node.left)
# then print the data of node
inorder.append(node.data)
# now recur on right child
Inorder(node.right)
# Preorder traversal
def Preorder(node):
global preorder
if (node == None):
return
# First print data of node
preorder.append(node.data)
# then recur on left subtree
Preorder(node.left)
# now recur on right subtree
Preorder(node.right)
# Function to print the any array
def PrintArray(median):
for i in range(len(median)):
print(median[i], end = " ")
return
# Function to create and print
# the Median array
def MedianArray(node):
global inorder, postorder, preorder
# Vector to store
# the median values
median = []
if (node == None):
return
# Traverse the tree
Postorder(node)
Inorder(node)
Preorder(node)
n = len(preorder)
for i in range(n):
# Temporary vector to sort
# the three values
temp = []
# Insert the values at ith index
# for each traversal into temp
temp.append(postorder[i])
temp.append(inorder[i])
temp.append(preorder[i])
# Sort the temp vector to
# find the median
temp = sorted(temp)
# Insert the middle value in
# temp into the median vector
median.append(temp[1])
PrintArray(median)
# Driver Code
if __name__ == '__main__':
preorder, inorder, postorder = [], [], []
root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)
MedianArray(root)
# This code is contributed by mohit kumar 29
// C# program to Obtain the median
// array for the preorder, postorder
// and inorder traversal of a binary tree
using System;
using System.Collections.Generic;
using System.Numerics;
// A binary tree node has data,
// a pointer to the left child
// and a pointer to the right child
public class Node
{
public int data;
public Node left,right;
public Node(int item)
{
data = item;
left = right = null;
}
}
public class Tree{
static List
static List
static List
static Node root;
// Postorder traversal
public static void Postorder(Node node)
{
if(node == null)
{
return;
}
// First recur on left subtree
Postorder(node.left);
// then recur on right subtree
Postorder(node.right);
// now deal with the node
postorder.Add(node.data);
}
// Inorder traversal
public static void Inorder(Node node)
{
if(node == null)
{
return;
}
// First recur on left child
Inorder(node.left);
// then print the data of node
inorder.Add(node.data);
// now recur on right child
Inorder(node.right);
}
// Preorder traversal
public static void Preorder(Node node)
{
if(node == null)
{
return;
}
// First print data of node
preorder.Add(node.data);
// then recur on left subtree
Preorder(node.left);
// now recur on right subtree
Preorder(node.right);
}
// Function to print the any array
public static void PrintArray(List
{
for(int i = 0; i
Console.Write(median[i] + " ");
}
}
// Function to create and print
// the Median array
public static void MedianArray(Node node)
{
// Vector to store
// the median values
List
if(node == null)
{
return;
}
// Traverse the tree
Postorder(node);
Inorder(node);
Preorder(node);
int n = preorder.Count;
for(int i = 0; i
// Temporary vector to sort
// the three values
List
// Insert the values at ith index
// for each traversal into temp
temp.Add(postorder[i]);
temp.Add(inorder[i]);
temp.Add(preorder[i]);
// Sort the temp vector to
// find the median
temp.Sort();
// Insert the middle value in
// temp into the median vector
median.Add(temp[1]);
}
PrintArray(median);
}
// Driver code
static public void Main ()
{
Tree.root = new Node(1);
Tree.root.left = new Node(2);
Tree.root.right = new Node(3);
Tree.root.left.left = new Node(4);
Tree.root.left.right = new Node(5);
MedianArray(root);
}
}
// This code is contributed by rag2127
Output:
4 2 4 3 3
时间复杂度:O(N)T4】