热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Pytorch写数字怎么识别LeNet模型

这篇文章主要为大家分析了Pytorch写数字怎么识别LeNet模型的相关知识点,内容详细易懂,操作细节合理,具有一定参考价值。如果感

这篇文章主要为大家分析了Pytorch写数字怎么识别LeNet模型的相关知识点,内容详细易懂,操作细节合理,具有一定参考价值。如果感兴趣的话,不妨跟着跟随小编一起来看看,下面跟着小编一起深入学习“Pytorch写数字怎么识别LeNet模型”的知识吧。

LeNet网络

Pytorch写数字怎么识别LeNet模型

LeNet网络过卷积层时候保持分辨率不变,过池化层时候分辨率变小。实现如下

from PIL import Image
import cv2
import matplotlib.pyplot as plt
import torchvision
from torchvision import transforms
import torch
from torch.utils.data import DataLoader
import torch.nn as nn
import numpy as np
import tqdm as tqdm

class LeNet(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.sequential = nn.Sequential(nn.Conv2d(1,6,kernel_size=5,padding=2),nn.Sigmoid(),
                                        nn.AvgPool2d(kernel_size=2,stride=2),
                                        nn.Conv2d(6,16,kernel_size=5),nn.Sigmoid(),
                                        nn.AvgPool2d(kernel_size=2,stride=2),
                                        nn.Flatten(),
                                        nn.Linear(16*25,120),nn.Sigmoid(),
                                        nn.Linear(120,84),nn.Sigmoid(),
                                        nn.Linear(84,10))
        
    
    def forward(self,x):
        return self.sequential(x)

class MLP(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.sequential = nn.Sequential(nn.Flatten(),
                          nn.Linear(28*28,120),nn.Sigmoid(),
                          nn.Linear(120,84),nn.Sigmoid(),
                          nn.Linear(84,10))
        
    
    def forward(self,x):
        return self.sequential(x)

epochs = 15
batch = 32
lr=0.9
loss = nn.CrossEntropyLoss()
model = LeNet()
optimizer = torch.optim.SGD(model.parameters(),lr)
device = torch.device('cuda')
root = r"./"
trans_compose  = transforms.Compose([transforms.ToTensor(),
                    ])
train_data = torchvision.datasets.MNIST(root,train=True,transform=trans_compose,download=True)
test_data = torchvision.datasets.MNIST(root,train=False,transform=trans_compose,download=True)
train_loader = DataLoader(train_data,batch_size=batch,shuffle=True)
test_loader = DataLoader(test_data,batch_size=batch,shuffle=False)

model.to(device)
loss.to(device)
# model.apply(init_weights)
for epoch in range(epochs):
  train_loss = 0
  test_loss = 0
  correct_train = 0
  correct_test = 0
  for index,(x,y) in enumerate(train_loader):
    x = x.to(device)
    y = y.to(device)
    predict = model(x)
    L = loss(predict,y)
    optimizer.zero_grad()
    L.backward()
    optimizer.step()
    train_loss = train_loss + L
    correct_train += (predict.argmax(dim=1)==y).sum()
  acc_train = correct_train/(batch*len(train_loader))
  with torch.no_grad():
    for index,(x,y) in enumerate(test_loader):
      [x,y] = [x.to(device),y.to(device)]
      predict = model(x)
      L1 = loss(predict,y)
      test_loss = test_loss + L1
      correct_test += (predict.argmax(dim=1)==y).sum()
    acc_test = correct_test/(batch*len(test_loader))
  print(f'epoch:{epoch},train_loss:{train_loss/batch},test_loss:{test_loss/batch},acc_train:{acc_train},acc_test:{acc_test}')

训练结果

epoch:12,train_loss:2.235553741455078,test_loss:0.3947642743587494,acc_train:0.9879833459854126,acc_test:0.9851238131523132
epoch:13,train_loss:2.028963804244995,test_loss:0.3220392167568207,acc_train:0.9891499876976013,acc_test:0.9875199794769287
epoch:14,train_loss:1.8020273447036743,test_loss:0.34837451577186584,acc_train:0.9901833534240723,acc_test:0.98702073097229

泛化能力测试

找了一张图片,将其分割成只含一个数字的图片进行测试

Pytorch写数字怎么识别LeNet模型

images_np = cv2.imread("/content/R-C.png",cv2.IMREAD_GRAYSCALE)
h,w = images_np.shape
images_np = np.array(255*torch.ones(h,w))-images_np#图片反色
images = Image.fromarray(images_np)
plt.figure(1)
plt.imshow(images)
test_images = []
for i in range(10):
  for j in range(16):
    test_images.append(images_np[h//10*i:h//10+h//10*i,w//16*j:w//16*j+w//16])
sample = test_images[77]
sample_tensor = torch.tensor(sample).unsqueeze(0).unsqueeze(0).type(torch.FloatTensor).to(device)
sample_tensor = torch.nn.functional.interpolate(sample_tensor,(28,28))
predict = model(sample_tensor)
output = predict.argmax()
print(output)
plt.figure(2)
plt.imshow(np.array(sample_tensor.squeeze().to('cpu')))

Pytorch写数字怎么识别LeNet模型

此时预测结果为4,预测正确。从这段代码中可以看到有一个反色的步骤,若不反色,结果会受到影响,如下图所示,预测为0,错误。
模型用于输入的图片是单通道的黑白图片,这里由于可视化出现了黄色,但实际上是黑白色,反色操作说明了数据的预处理十分的重要,很多数据如果是不清理过是无法直接用于推理的。

Pytorch写数字怎么识别LeNet模型

将所有用来泛化性测试的图片进行准确率测试:

correct = 0
i = 0
cnt = 1
for sample in test_images:
  sample_tensor = torch.tensor(sample).unsqueeze(0).unsqueeze(0).type(torch.FloatTensor).to(device)
  sample_tensor = torch.nn.functional.interpolate(sample_tensor,(28,28))
  predict = model(sample_tensor)
  output = predict.argmax()
  if(output==i):
    correct+=1
  if(cnt%16==0):
    i+=1
  cnt+=1
acc_g = correct/len(test_images)
print(f'acc_g:{acc_g}')

如果不反色,acc_g=0.15

acc_g:0.50625

pytorch的优点

1.PyTorch是相当简洁且高效快速的框架;2.设计追求最少的封装;3.设计符合人类思维,它让用户尽可能地专注于实现自己的想法;4.与google的Tensorflow类似,FAIR的支持足以确保PyTorch获得持续的开发更新;5.PyTorch作者亲自维护的论坛 供用户交流和求教问题6.入门简单

关于“Pytorch写数字怎么识别LeNet模型”就介绍到这了,更多相关内容可以搜索编程笔记以前的文章,希望能够帮助大家答疑解惑,请多多支持编程笔记网站!


推荐阅读
  • 【图像分类实战】利用DenseNet在PyTorch中实现秃头识别
    本文详细介绍了如何使用DenseNet模型在PyTorch框架下实现秃头识别。首先,文章概述了项目所需的库和全局参数设置。接着,对图像进行预处理并读取数据集。随后,构建并配置DenseNet模型,设置训练和验证流程。最后,通过测试阶段验证模型性能,并提供了完整的代码实现。本文不仅涵盖了技术细节,还提供了实用的操作指南,适合初学者和有经验的研究人员参考。 ... [详细]
  • 视觉Transformer综述
    本文综述了视觉Transformer在计算机视觉领域的应用,从原始Transformer出发,详细介绍了其在图像分类、目标检测和图像分割等任务中的最新进展。文章不仅涵盖了基础的Transformer架构,还深入探讨了各类增强版Transformer模型的设计思路和技术细节。 ... [详细]
  • 通过使用CIFAR-10数据集,本文详细介绍了如何快速掌握Mixup数据增强技术,并展示了该方法在图像分类任务中的显著效果。实验结果表明,Mixup能够有效提高模型的泛化能力和分类精度,为图像识别领域的研究提供了有价值的参考。 ... [详细]
  • 使用R语言进行Foodmart数据的关联规则分析与可视化
    本文探讨了如何利用R语言中的arules和arulesViz包对Foodmart数据集进行关联规则的挖掘与可视化。文章首先介绍了数据集的基本情况,然后逐步展示了如何进行数据预处理、规则挖掘及结果的图形化呈现。 ... [详细]
  • 本文将深入探讨生成对抗网络(GAN)在计算机视觉领域的应用。作为该领域的经典模型,GAN通过生成器和判别器的对抗训练,能够高效地生成高质量的图像。本文不仅回顾了GAN的基本原理,还将介绍一些最新的进展和技术优化方法,帮助读者全面掌握这一重要工具。 ... [详细]
  • Exploring issues and solutions when defining multiple Faust agents programmatically. ... [详细]
  • 本文总结了在多人协作开发环境中使用 Git 时常见的问题及其解决方案,包括错误合并分支的处理、使用 SourceTree 查找问题提交、Git 自动生成的提交信息解释、删除远程仓库文件夹而不删除本地文件的方法、合并冲突时的注意事项以及如何将多个提交合并为一个。 ... [详细]
  • Hadoop MapReduce 实战案例:手机流量使用统计分析
    本文通过一个具体的Hadoop MapReduce案例,详细介绍了如何利用MapReduce框架来统计和分析手机用户的流量使用情况,包括上行和下行流量的计算以及总流量的汇总。 ... [详细]
  • OBS Studio自动化实践:利用脚本批量生成录制场景
    本文探讨了如何利用OBS Studio进行高效录屏,并通过脚本实现场景的自动生成。适合对自动化办公感兴趣的读者。 ... [详细]
  • SDWebImage第三方库学习
    1、基本使用方法异步下载并缓存-(void)sd_setImageWithURL:(nullableNSURL*)urlNS_REFINED_FOR_SWIFT;使用占位图片& ... [详细]
  • DirectShow Filter 开发指南
    本文总结了 DirectShow Filter 的开发经验,重点介绍了 Source Filter、In-Place Transform Filter 和 Render Filter 的实现方法。通过使用 DirectShow 提供的类,可以简化 Filter 的开发过程。 ... [详细]
  • 单片微机原理P3:80C51外部拓展系统
      外部拓展其实是个相对来说很好玩的章节,可以真正开始用单片机写程序了,比较重要的是外部存储器拓展,81C55拓展,矩阵键盘,动态显示,DAC和ADC。0.IO接口电路概念与存 ... [详细]
  • 使用CSS实现鼠标悬停时图片或按钮的平滑放大效果
    通过CSS技术,当鼠标悬停在图片或按钮上时,可以实现元素平滑放大的视觉效果,并可自由调整动画的持续时间。本文将详细介绍如何利用CSS实现这一功能。 ... [详细]
  • 分层学习率衰减在NLP预训练模型中的应用
    本文探讨了如何通过分层学习率衰减技术来优化NLP预训练模型的微调过程,特别是针对BERT模型。通过调整不同层的学习率,可以有效提高模型性能。 ... [详细]
  • 小编给大家分享一下Vue3中如何提高开发效率,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获, ... [详细]
author-avatar
心理学点滴_312
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有