热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Pytorch实战:基于鲸鱼WOA优化1DCNN的轴承故障诊断

目录0.引言1.关键点2.WOA优化1DCNN超参数实战2.1数据准备2.21DCNN故障诊断建模2.3采用WOA优化1DCNN超参数0.引言采用1DCNN进行轴承故障诊

目录

0.引言

1.关键点

2.WOA优化1DCNN超参数实战

2.1 数据准备

2.2 1DCNN故障诊断建模

2.3 采用WOA优化1DCNN超参数



0.引言

        采用1DCNN进行轴承故障诊断建模,并基于鲸鱼优化算法WOA对1DCNN的超参数进行优化,以实现更高的精度。建立一个两层的1DCNN,优化的参数包括学习率、训练次数、batchsize,卷积层1的核数量、核大小,池化层1的核大小,卷积层2的核数量、核大小,池化层2的核大小,全连接层1、全连接层2的节点数,总共11个超参数。


1.关键点

        在Pytorch中,卷积层与池化层由于无法像tensorflow中一样,将padding设置成“same”模式,因此每一层的输出要手动计算,并且与全连接层的输入节点参数也要精确计算出来,否则节点数不匹配,容易报错。而我们采用优化算法来进行优化的,每一层的参数不是固定的,所以第一步是实现像tensorflow中一样,将卷积层与池化层设计成padding具备“same”模式的结构,代码如下:

class Conv1d(torch.nn.Module):def __init__(self, in_channels, out_channels, kernel_size, bias=True, padding_layer=nn.ReflectionPad1d):super().__init__()ka = kernel_size // 2kb = ka - 1 if kernel_size % 2 == 0 else kaself.net = torch.nn.Sequential(padding_layer((ka,kb)),nn.Conv1d(in_channels, out_channels, kernel_size, bias=bias))def forward(self, x):return self.net(x)class MaxPool1d(torch.nn.Module):def __init__(self, kernel_size):super().__init__()self.net=torch.nn.MaxPool1d(kernel_size=kernel_size)def forward(self, x):x1=self.net(x)padsize=x.size(2)-x1.size(2)ka = padsize // 2kb = ka if padsize % 2 == 0 else ka+1return F.pad(x1,(ka,kb))net1=Conv1d(1,3,10)#输入通道、输出通道数、卷积核大小
net2=MaxPool1d(3)#池化核大小
dummy=torch.rand(16,1,101)
print(net1(dummy).size())
print(net1(dummy).size())
# torch.Size([16, 3, 101])
# torch.Size([16, 3, 101])

可以看出,无论怎么设置输入的长度,与卷积、池化参数,他的输出长度都是与输入的长度都是一样的。

采用上述代码设计一个两层的1DCNN,代码如下 

class ConvNet(torch.nn.Module):def __init__(self,num_input,nk1,k1,pk1,nk2,k2,pk2,fc1,fc2, num_classes):super(ConvNet, self).__init__()# 1D-CNN 输入1*1024振动信号self.net = nn.Sequential(Conv1d(1,nk1 , kernel_size=k1), MaxPool1d(kernel_size=pk1), nn.ReLU(), nn.BatchNorm1d(nk1),Conv1d(nk1, nk2, kernel_size=k2), MaxPool1d(kernel_size=pk2), nn.ReLU(), nn.BatchNorm1d(nk2))self.feature_extractor = nn.Sequential(nn.Linear(num_input*nk2, fc1),nn.ReLU(),
# nn.Dropout(0.5),nn.Linear(fc1, fc2)) self.classifier=nn.Sequential(nn.ReLU(),nn.Linear(fc2, num_classes),)def forward(self,x):x= self.net(x)#进行卷积+池化操作提取振动信号特征x=x.view(-1, x.size(1)*x.size(2))feature = self.feature_extractor(x)#将上述特征拉伸为向量输入进全连接层实现分类logits = self.classifier(feature)#将上述特征拉伸为向量输入进全连接层实现分类probas = F.softmax(logits, dim=1)# softmax分类器return logits,probasnet=ConvNet(101,8,3,3,16,3,4,128,128,10)
dummy=torch.rand(16,1,101)
print(net(dummy)[0].size())
# torch.Size([16, 10])
net=ConvNet(111,8,7,3,16,7,4,256,128,10)
dummy=torch.rand(16,1,111)
print(net(dummy)[0].size())
# torch.Size([16, 10])

可以看出,无论怎么设置输入的长度,与卷积、池化参数,他的输出都是16x10(16是batchsize,10是类别数)


2.WOA优化1DCNN超参数实战


2.1 数据准备

        数据依旧采用48k的驱动端轴承故障诊断数据,每种故障样本数为200,每个样本的长度为1024,按照7:2:1的比例划分训练集、验证集、测试集

#coding:utf-8from scipy.io import loadmat
from scipy.io import savematimport numpy as np
import os
from sklearn import preprocessing # 0-1编码
from sklearn.model_selection import StratifiedShuffleSplit # 随机划分,保证每一类比例相同def prepro(d_path, length=864, number=1000, normal=True, rate=[0.7, 0.2, 0.1], enc=True, enc_step=28):"""对数据进行预处理,返回train_X, train_Y, valid_X, valid_Y, test_X, test_Y样本.:param d_path: 源数据地址:param length: 信号长度,默认2个信号周期,864:param number: 每种信号个数,总共10类,默认每个类别1000个数据:param normal: 是否标准化.True,Fales.默认True:param rate: 训练集/验证集/测试集比例.默认[0.5,0.25,0.25],相加要等于1:param enc: 训练集、验证集是否采用数据增强.Bool,默认True:param enc_step: 增强数据集采样顺延间隔:return: Train_X, Train_Y, Valid_X, Valid_Y, Test_X, Test_Y```import preprocess.preprocess_nonoise as pretrain_X, train_Y, valid_X, valid_Y, test_X, test_Y = pre.prepro(d_path=path,length=864,number=1000,normal=False,rate=[0.5, 0.25, 0.25],enc=True,enc_step=28)```"""# 获得该文件夹下所有.mat文件名filenames = os.listdir(d_path)def capture(original_path):"""读取mat文件,返回字典:param original_path: 读取路径:return: 数据字典"""files = {}for i in filenames:# 文件路径file_path = os.path.join(d_path, i)file = loadmat(file_path)file_keys = file.keys()for key in file_keys:if 'DE' in key:files[i] = file[key].ravel()return filesdef slice_enc(data, slice_rate=rate[1] + rate[2]):"""将数据切分为前面多少比例,后面多少比例.:param data: 单挑数据:param slice_rate: 验证集以及测试集所占的比例:return: 切分好的数据"""keys = data.keys()Train_Samples = {}Test_Samples = {}for i in keys:slice_data = data[i]all_lenght = len(slice_data)end_index = int(all_lenght * (1 - slice_rate))samp_train = int(number * (1 - slice_rate)) # 700Train_sample = []Test_Sample = []if enc:enc_time = length // enc_stepsamp_step = 0 # 用来计数Train采样次数for j in range(samp_train):random_start = np.random.randint(low=0, high=(end_index - 2 * length))label = 0for h in range(enc_time):samp_step += 1random_start += enc_stepsample = slice_data[random_start: random_start + length]Train_sample.append(sample)if samp_step == samp_train:label = 1breakif label:breakelse:for j in range(samp_train):random_start = np.random.randint(low=0, high=(end_index - length))sample = slice_data[random_start:random_start + length]Train_sample.append(sample)# 抓取测试数据for h in range(number - samp_train):random_start = np.random.randint(low=end_index, high=(all_lenght - length))sample = slice_data[random_start:random_start + length]Test_Sample.append(sample)Train_Samples[i] = Train_sampleTest_Samples[i] = Test_Samplereturn Train_Samples, Test_Samples# 仅抽样完成,打标签def add_labels(train_test):X = []Y = []label = 0for i in filenames:x = train_test[i]X += xlenx = len(x)Y += [label] * lenxlabel += 1return X, Y# one-hot编码def one_hot(Train_Y, Test_Y):Train_Y = np.array(Train_Y).reshape([-1, 1])Test_Y = np.array(Test_Y).reshape([-1, 1])Encoder = preprocessing.OneHotEncoder()Encoder.fit(Train_Y)Train_Y = Encoder.transform(Train_Y).toarray()Test_Y = Encoder.transform(Test_Y).toarray()Train_Y = np.asarray(Train_Y, dtype=np.int32)Test_Y = np.asarray(Test_Y, dtype=np.int32)return Train_Y, Test_Ydef scalar_stand(Train_X, Test_X):# 用训练集标准差标准化训练集以及测试集scalar = preprocessing.StandardScaler().fit(Train_X)Train_X = scalar.transform(Train_X)Test_X = scalar.transform(Test_X)return Train_X, Test_Xdef valid_test_slice(Test_X, Test_Y):test_size = rate[2] / (rate[1] + rate[2])ss = StratifiedShuffleSplit(n_splits=1, test_size=test_size)for train_index, test_index in ss.split(Test_X, Test_Y):X_valid, X_test = Test_X[train_index], Test_X[test_index]Y_valid, Y_test = Test_Y[train_index], Test_Y[test_index]return X_valid, Y_valid, X_test, Y_test# 从所有.mat文件中读取出数据的字典data = capture(original_path=d_path)# 将数据切分为训练集、测试集train, test = slice_enc(data)# 为训练集制作标签,返回X,YTrain_X, Train_Y = add_labels(train)# 为测试集制作标签,返回X,YTest_X, Test_Y = add_labels(test)# 为训练集Y/测试集One-hot标签Train_Y, Test_Y = one_hot(Train_Y, Test_Y)# 训练数据/测试数据 是否标准化.if normal:Train_X, Test_X = scalar_stand(Train_X, Test_X)else:# 需要做一个数据转换,转换成np格式.Train_X = np.asarray(Train_X)Test_X = np.asarray(Test_X)# 将测试集切分为验证集合和测试集.Valid_X, Valid_Y, Test_X, Test_Y = valid_test_slice(Test_X, Test_Y)return Train_X, Train_Y, Valid_X, Valid_Y, Test_X, Test_Yif __name__ == "__main__":path = '0HP/'train_X, train_Y, valid_X, valid_Y, test_X, test_Y = prepro(d_path=path,length=1024,number=200,normal=True,rate=[0.7, 0.2, 0.1],enc=False,enc_step=28)savemat("data_process.mat", {'train_X': train_X,'train_Y': train_Y,'valid_X': valid_X,'valid_Y': valid_Y,'test_X': test_X,'test_Y': test_Y})

2.2 1DCNN故障诊断建模

        基于1中的1DCNN进行故障诊断建模,参数我们随意设置,测试集精度为80.5%(可以手动调参,提高精度,不过我比较懒,而且要对比出优化的重要性)

# coding: utf-8
# In[1]: 导入必要的库函数import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from sklearn.preprocessing import MinMaxScaler,StandardScaler
from model import ConvNet,Model_fit
import matplotlib.pyplot as plt
if torch.cuda.is_available():torch.backends.cudnn.deterministic = True
from scipy.io import loadmat
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")# In[2] 加载数据
num_classes=10# 振动信号----1D-CNN输入
data=loadmat('data_process.mat')
x_train1=data['train_X']
x_valid1=data['valid_X']
y_train=data['train_Y'].argmax(axis=1)
y_valid=data['valid_Y'].argmax(axis=1)
ss1=StandardScaler().fit(x_train1) #MinMaxScaler StandardScaler
x_train1=ss1.transform(x_train1)
x_valid1=ss1.transform(x_valid1)x_train1=x_train1.reshape(-1,1,1024)
x_valid1=x_valid1.reshape(-1,1,1024)# 转换为torch的输入格式
train_features1 = torch.tensor(x_train1).type(torch.FloatTensor)
valid_features1 = torch.tensor(x_valid1).type(torch.FloatTensor)train_labels = torch.tensor(y_train).type(torch.LongTensor)
valid_labels = torch.tensor(y_valid).type(torch.LongTensor)print(train_features1.shape)
print(train_labels.shape)N=train_features1.size(0)# In[3]: 参数设置
learning_rate = 0.005#学习率
num_epochs = 10#迭代次数
batch_size = 64 #batchsize
# In[4]: 模型设置
torch.manual_seed(0)
torch.cuda.manual_seed(0)
model=ConvNet(train_features1.size(-1),8,3,3,16,3,4,128,128,10)
train_again=True # True就重新训练
if train_again: # In[5]:Model=Model_fit(model,batch_size,learning_rate,num_epochs,device,verbose=True)Model.train(train_features1,train_labels,valid_features1,valid_labels)model= Model.modeltrain_loss=Model.train_lossvalid_loss=Model.valid_lossvalid_acc=Model.valid_acctrain_acc=Model.train_acctorch.save(model,'model/W_CNN1.pkl')#保存整个网络参数# In[] #loss曲线plt.figure()plt.plot(np.array(train_loss),label='train')plt.plot(np.array(valid_loss),label='valid')plt.title('loss curve')plt.legend()plt.savefig('图片保存/loss')# accuracy 曲线plt.figure()plt.plot(np.array(train_acc),label='train')plt.plot(np.array(valid_acc),label='valid')plt.title('accuracy curve')plt.legend()plt.savefig('图片保存/accuracy')plt.show()
else:model=torch.load('model/W_CNN1.pkl',map_location=torch.device('cpu'))#加载模型Model=Model_fit(model,batch_size,learning_rate,num_epochs,device,verbose=True)# In[6]: 利用训练好的模型 对测试集进行分类#提取测试集
x_test1=data['test_X']
y_test=data['test_Y'].argmax(axis=1)x_test1=ss1.transform(x_test1)
x_test1=x_test1.reshape(-1,1,1024)test_features1 = torch.tensor(x_test1).type(torch.FloatTensor)test_labels = torch.tensor(y_test).type(torch.LongTensor)_,teac=Model.compute_accuracy(test_features1,test_labels)
print('CNN直接分类的测试集正确率为:',teac*100,'%')

2.3 采用WOA优化1DCNN超参数

        以最小化验证集分类错误率为适应度函数进行网络优化,目的是找到一组最优超参数,使得训练好的网络的验证集分类错误率最低。

# coding: utf-8
# In[1]: 导入必要的库函数import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from sklearn.preprocessing import MinMaxScaler,StandardScaler
from model import ConvNet,Model_fit
from optim import WOA,HUATU
import matplotlib.pyplot as plt
if torch.cuda.is_available():torch.backends.cudnn.deterministic = True
from scipy.io import loadmat
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#torch.manual_seed(0)# In[2] 加载数据
num_classes=10# 振动信号----1D-CNN输入
data=loadmat('data_process.mat')
x_train1=data['train_X']
x_valid1=data['valid_X']
y_train=data['train_Y'].argmax(axis=1)
y_valid=data['valid_Y'].argmax(axis=1)
ss1=StandardScaler().fit(x_train1) #MinMaxScaler StandardScaler
x_train1=ss1.transform(x_train1)
x_valid1=ss1.transform(x_valid1)x_train1=x_train1.reshape(-1,1,1024)
x_valid1=x_valid1.reshape(-1,1,1024)# 转换为torch的输入格式
train_features1 = torch.tensor(x_train1).type(torch.FloatTensor)
valid_features1 = torch.tensor(x_valid1).type(torch.FloatTensor)train_labels = torch.tensor(y_train).type(torch.LongTensor)
valid_labels = torch.tensor(y_valid).type(torch.LongTensor)# In[] WOA优化CNN
optim_again = True # 为 False 的时候就直接加载之间优化好的超参建建
# 训练模型
if optim_again:best,trace,process=WOA(train_features1,train_labels,valid_features1,valid_labels)trace,process=np.array(trace),np.array(process)np.savez('model/woa_result.npz',trace=trace,best=best,process=process)
else:para=np.load('model/woa_result.npz')trace=para['trace'].reshape(-1,)process=para['process']best=para['best'].reshape(-1,)
HUATU(trace)
# In[3]: 参数设置
pop=best
learning_rate = pop[0] # 学习率
num_epochs = int(pop[1]) # 迭代次数
batch_size = int(pop[2]) # batchsizenk1 = int(pop[3]) # conv1核数量
k1 = int(pop[4]) # conv1核大小
pk1 = int(pop[5]) # pool1核大小nk2 = int(pop[6]) # conv2核数量
k2 = int(pop[7]) # conv2核大小
pk2 = int(pop[8]) # pool2核大小fc1 = int(pop[9]) #全连接层1节点数
fc2 = int(pop[10]) #全连接层2节点数
torch.manual_seed(0)
torch.cuda.manual_seed(0)
model=ConvNet(train_features1.size(-1),nk1,k1,pk1,nk2,k2,pk2,fc1,fc2,10)
train_again= True #True 就重新训练
# In[5]:
if train_again: Model=Model_fit(model,batch_size,learning_rate,num_epochs,device,verbose=True)Model.train(train_features1,train_labels,valid_features1,valid_labels)model= Model.modeltrain_loss=Model.train_lossvalid_loss=Model.valid_lossvalid_acc=Model.valid_acctrain_acc=Model.train_acctorch.save(model,'model/W_CNN2.pkl')#保存整个网络参数#loss曲线plt.figure()plt.plot(np.array(train_loss),label='train')plt.plot(np.array(valid_loss),label='valid')plt.title('loss curve')plt.legend()plt.savefig('图片保存/loss')# accuracy 曲线plt.figure()plt.plot(np.array(train_acc),label='train')plt.plot(np.array(valid_acc),label='valid')plt.title('accuracy curve')plt.legend()plt.savefig('图片保存/accuracy')plt.show()
else:model=torch.load('model/W_CNN2.pkl',map_location=torch.device('cpu'))#加载模型Model=Model_fit(model,batch_size,learning_rate,num_epochs,device,verbose=True)# In[6]: 利用训练好的模型 对测试集进行分类#提取测试集
x_test1=data['test_X']
y_test=data['test_Y'].argmax(axis=1)x_test1=ss1.transform(x_test1)
x_test1=x_test1.reshape(-1,1,1024)test_features1 = torch.tensor(x_test1).type(torch.FloatTensor)test_labels = torch.tensor(y_test).type(torch.LongTensor)_,teac=Model.compute_accuracy(test_features1,test_labels)
print('WOA-CNN分类的测试集正确率为:',teac*100,'%')

由于是最小化 验证集分类错误率为适应度函数,所以适应度曲线是一条下降的曲线。

3.代码

代码链接见评论区我的评论


推荐阅读
  • 超级简单加解密工具的方案和功能
    本文介绍了一个超级简单的加解密工具的方案和功能。该工具可以读取文件头,并根据特定长度进行加密,加密后将加密部分写入源文件。同时,该工具也支持解密操作。加密和解密过程是可逆的。本文还提到了一些相关的功能和使用方法,并给出了Python代码示例。 ... [详细]
  • 云原生边缘计算之KubeEdge简介及功能特点
    本文介绍了云原生边缘计算中的KubeEdge系统,该系统是一个开源系统,用于将容器化应用程序编排功能扩展到Edge的主机。它基于Kubernetes构建,并为网络应用程序提供基础架构支持。同时,KubeEdge具有离线模式、基于Kubernetes的节点、群集、应用程序和设备管理、资源优化等特点。此外,KubeEdge还支持跨平台工作,在私有、公共和混合云中都可以运行。同时,KubeEdge还提供数据管理和数据分析管道引擎的支持。最后,本文还介绍了KubeEdge系统生成证书的方法。 ... [详细]
  • sklearn数据集库中的常用数据集类型介绍
    本文介绍了sklearn数据集库中常用的数据集类型,包括玩具数据集和样本生成器。其中详细介绍了波士顿房价数据集,包含了波士顿506处房屋的13种不同特征以及房屋价格,适用于回归任务。 ... [详细]
  • PDO MySQL
    PDOMySQL如果文章有成千上万篇,该怎样保存?数据保存有多种方式,比如单机文件、单机数据库(SQLite)、网络数据库(MySQL、MariaDB)等等。根据项目来选择,做We ... [详细]
  • 开源Keras Faster RCNN模型介绍及代码结构解析
    本文介绍了开源Keras Faster RCNN模型的环境需求和代码结构,包括FasterRCNN源码解析、RPN与classifier定义、data_generators.py文件的功能以及损失计算。同时提供了该模型的开源地址和安装所需的库。 ... [详细]
  • mapreduce数据去重的实现方法
    本文介绍了利用mapreduce实现数据去重的方法,同时还介绍了人工智能AI领域中常用的框架和工具,包括Keras、PyTorch、MXNet、TensorFlow和PaddlePaddle,并提供了深度学习实战的代码下载链接。 ... [详细]
  • 本文介绍了一个Python函数same_set,用于判断两个相等长度的数组是否包含相同的元素。函数会忽略元素的顺序和重复次数,如果两个数组包含相同的元素,则返回1,否则返回0。文章还提供了函数的具体实现代码和样例输入输出。 ... [详细]
  • MySQL多表数据库操作方法及子查询详解
    本文详细介绍了MySQL数据库的多表操作方法,包括增删改和单表查询,同时还解释了子查询的概念和用法。文章通过示例和步骤说明了如何进行数据的插入、删除和更新操作,以及如何执行单表查询和使用聚合函数进行统计。对于需要对MySQL数据库进行操作的读者来说,本文是一个非常实用的参考资料。 ... [详细]
  • HashMap的扩容知识详解
    本文详细介绍了HashMap的扩容知识,包括扩容的概述、扩容条件以及1.7版本中的扩容方法。通过学习本文,读者可以全面了解HashMap的扩容机制,提升对HashMap的理解和应用能力。 ... [详细]
  • Python教学练习二Python1-12练习二一、判断季节用户输入月份,判断这个月是哪个季节?3,4,5月----春 ... [详细]
  • 本文整理了Java中org.apache.hadoop.hive.ql.plan.ExprNodeColumnDesc.getTypeInfo()方法的一些代码示例,展 ... [详细]
  • 【论文】ICLR 2020 九篇满分论文!!!
    点击上方,选择星标或置顶,每天给你送干货!阅读大概需要11分钟跟随小博主,每天进步一丢丢来自:深度学习技术前沿 ... [详细]
  • 很多时候在注册一些比较重要的帐号,或者使用一些比较重要的接口的时候,需要使用到随机字符串,为了方便,我们设计这个脚本需要注意 ... [详细]
  • Opencv提供了几种分类器,例程里通过字符识别来进行说明的1、支持向量机(SVM):给定训练样本,支持向量机建立一个超平面作为决策平面,使得正例和反例之间的隔离边缘被最大化。函数原型:训练原型cv ... [详细]
  • mapreduce源码分析总结
    这篇文章总结的非常到位,故而转之一MapReduce概述MapReduce是一个用于大规模数据处理的分布式计算模型,它最初是由Google工程师设计并实现的ÿ ... [详细]
author-avatar
jny2272191
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有