热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Pytorch 使用Google Colab训练神经网络深度学习

本文以VOC数据集为例,因此在训练的时候没有修改classes_path等,如果是训练自己的数据集,各位一定要注意修改classes

学习前言

Colab是谷歌提供的一个云学习平台,Very Nice,最近卡不够用了决定去白嫖一波。该博客只会说明如何使用Colab对已有的深度学习仓库进行训练,并不会说如何进入外网、如何注册等。

该博客仅为了演示Colab的使用,主要是为了各位熟悉Colab操作,具体问题具体分析,操作不当与版本更迭会导致步骤出错,如果出错的话建议多百度,多看代码与指令,查一下错误的原因,同时建议是有一定的基础同学再使用Colab

什么是Google Colab

Google Colab是谷歌提供的免费Jupyter 笔记本环境,不需要什么设置与环境配置就可以使用,完全在云端运行。不影响本地的使用。

Google Colab为研究者提供一定免费的GPU,可以编写和执行代码,所有这些都可通过浏览器免费使用。同学们可以在上面轻松地跑 Tensorflow、Pytorch 等深度学习框架。

尽管Google Colab提供了一定的免费资源,但资源量是受限制的,所有 Colab 运行时都会在一段时间后重置。Colab Pro 订阅者的使用量仍会受到限制,但相比非订阅者可享有的限额要多出大约一倍。Colab Pro+ 订阅者还可获享更高的稳定性。

相关链接

Colab官网:https://colab.research.google.com/(需要外网才可以进入)

ipynb Github:https://github.com/bubbliiiing/Colab

利用Colab进行训练

本文以YoloV4-Tiny-Pytorch版本的训练为例,进行Colab的使用演示。

一、数据集与预训练权重的上传

1、数据集的上传

Colab和Google自带的云盘联动非常好,因此我们需要首先将数据集上传云盘,这个上传的过程其实非常简单,本地先准备好数据集。

由于我所上传的库,均使用的VOC数据集,我们需要按照VOC数据集摆放好

本文直接以VOC07+12数据集为例进行演示。

JPEGImages里面存放的为图片文件,Annotations里面存放的标签文件,ImageSets里面存放的是区分验证集、训练集、测试集的txt文件。

然后将VOCdevkit文件整个进行打包。需要注意的是,不是对上面三个文件夹进行打包,而是对VOCdevkit进行打包,这样才满足数据处理的格式。

在获得打包后的压缩包后,将压缩包上传到谷歌云盘。我在谷歌云盘上新建了一个VOC_datasets文件夹存放压缩包。

此时数据集的上传已经完成。

2、预训练权重的上传

在谷歌云盘上进行文件夹的创建,首先创建Models,然后在Models里面创建yolov4-tiny-pytorch,然后在yolov4-tiny-pytorch里面创建logs和model_data。

model_data放置的是预训练文件。

logs放置的是网络训练过程中产生的权值。

由于我们这次使用的是YoloV4-Tiny-Pytorch的库,我们将它的预训练权重上传到model_data文件夹。

二、打开Colab并配置环境

1、笔记本的创建

在该步中,我们首先打开Colab的官网。

然后点击文件,创建笔记本,此时会创建一个jupyter笔记本。

创建完成后给文件改个名,好看一些。

之后点击代码执行程序,然后点击更改运行时类型,在其中硬件加速器部分选择GPU,Colab便会配置一个带有GPU的机器,此时笔记本就创建完成了。

2、环境的简单配置

colab已经集成了pytorch环境,无需专门配置pytorch,不过使用的torch版本较新。

由于我们的数据集在谷歌云盘上,所以我们还要挂载云盘。

from google.colab import drive
drive.mount("/content/gdrive")

我们将上述代码输入到笔记本中执行。将云盘挂载到服务器上。然后点击运行即可。

此时点击左边栏中,类似于文件夹的东西,就可以打开文件夹了,看看文件部署情况。gdrive就是我们配置的谷歌云盘。没有的话就去左侧刷新一下。

打开gdrive,其中有我们的数据集。

3、深度学习库的下载

这一步,我们需要完成深度学习仓库的下载,我们使用git clone指令进行下载。执行如下指令后,左边的文件中多出了yolov4-tiny-pytorch文件夹。没有的话就去左侧刷新一下。

然后我们通过了cd指令将根目录转移到了yolov4-tiny-pytorch文件夹。

!git clone https://github.com/bubbliiiing/yolov4-tiny-pytorch.git
%cd yolov4-tiny-pytorch/

4、数据集的复制与解压

直接将数据集布置在谷歌云盘会导致大量的云盘数据传输,速度远不及本地文件,因此我们需要将数据集复制到本地里进行处理。

我们输入下述代码进行文件的复制与解压。首先执行的是删除指令,将原来的空VOCdevkit文件夹进行删除。然后进行解压。

由于这里使用的是zip文件所以使用的是unzip指令,如果是其它形式的压缩包,需要根据压缩包的格式进行指令的修改(请同学们百度)。执行下述指令后,可以发现,左边的文件中已经解压好了VOC数据集。没有的话就去左侧刷新一下。

!rm -rf ./VOCdevkit
!cp /content/gdrive/MyDrive/VOC_datasets/VOC07+12+test.zip ./
!unzip ./VOC07+12+test.zip -d ./

5、保存路径设置

本文提供的代码默认的保存路径为logs文件夹,但Colab存在不稳定的问题,运行一段时间后会发生断线。

如果将权值保存在原始根目录下的logs文件夹,发生断线网络就白训练了,浪费大量的时间。

可以将google云盘软连接到根目录下,那么即使断线,权值也保留在云盘中。

本文之前在云盘中创建了logs文件夹。将该文件夹链接过来。

!rm -rf logs
!ln -s /content/gdrive/MyDrive/Models/yolov4-tiny-pytorch/logs logs

三、开始训练

1、标注文件的处理

打开voc_annotation.py文件,由于我们现在使用的直接就是VOC数据集,我们已经划分好了训练集验证集和测试集,所以我们将annotation_mode设置为2。

然后输入指令完成标签的处理,生成2007_train.txt和2007_val.txt。

!python voc_annotation.py

2、训练文件的处理

处理训练文件主要包含三个部分:

1、预训练文件的使用。

2、保存周期的设置,这个设置是因为云盘的存储空间有限,每代都保存会导致存储空间满出。

a、预训练文件的使用

首先修改model_path,指向我们上传到谷歌云盘的权值文件。在左侧文件栏中,找到models/yolov4-tiny-pytorch/model_data,复制权值路径。

替换右侧的model_path。

b、保存周期的设置

有一些仓库已经完成了更新,添加了每隔多少世代的保存参数,直接修改save_period既可,在本文中,我们将save_period设置成4,也就是每隔4代保存一次。

还没有更新的仓库只能每一代都保存了,记得偶尔去google云盘删一下。

3、开始训练

此时在笔记本里面输入:

!python train.py

即可开始训练。

断线怎么办?

1、防掉线措施

听说可以通过自动点击来减少掉线频率。

在Google colab的按F12,点击网页的控制台,粘贴如下代码:

function ConnectButton(){
	console.log("Connect pushed");
	document.querySelector("#top-toolbar > colab-connect-button").shadowRoot.querySelector("#connect").click()
}
setInterval(ConnectButton,60000);

2、完了还是掉线呀?

没什么办法,便宜的东西必然有它的坏处。

按照步骤重新来一次,然后将预训练权重设置成logs文件夹里面训练好的权值文件即可。

除此之外,Init_epoch等参数也需要调整。

总结

使用Colab训练比较重要的是处理好路径的关系,找到哪个文件在哪里,文件夹的执行目录在哪里,就可以比较简单的运行起程序了,不过Colab确实存在断线问题,我们需要时刻保存好文件,因此我将权值直接保存在云盘上,这样也不会丢失。

以上就是Pytorch 使用Google Colab训练神经网络深度学习的详细内容,更多关于Pytorch训练Google Colab神经网络的资料请关注编程笔记其它相关文章!


推荐阅读
  • Windows 7 64位系统下Redis的安装与PHP Redis扩展配置
    本文详细介绍了在Windows 7 64位操作系统中安装Redis以及配置PHP Redis扩展的方法,包括下载、安装和基本使用步骤。适合对Redis和PHP集成感兴趣的开发人员参考。 ... [详细]
  • Git管理工具SourceTree安装与使用指南
    本文详细介绍了Git管理工具SourceTree的安装、配置及团队协作方案,旨在帮助开发者更高效地进行版本控制和项目管理。 ... [详细]
  • 深入解析Java虚拟机(JVM)架构与原理
    本文旨在为读者提供对Java虚拟机(JVM)的全面理解,涵盖其主要组成部分、工作原理及其在不同平台上的实现。通过详细探讨JVM的结构和内部机制,帮助开发者更好地掌握Java编程的核心技术。 ... [详细]
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
  • 基于Node.js、Express、MongoDB和Socket.io的实时聊天应用开发
    本文详细介绍了使用Node.js、Express、MongoDB和Socket.io构建的实时聊天应用程序。涵盖项目结构、技术栈选择及关键依赖项的配置。 ... [详细]
  • 为了解决不同服务器间共享图片的需求,我们最初考虑建立一个FTP图片服务器。然而,考虑到项目是一个简单的CMS系统,为了简化流程,团队决定探索七牛云存储的解决方案。本文将详细介绍使用七牛云存储的过程和心得。 ... [详细]
  • 本文介绍如何配置SecureCRT以正确显示Linux终端的颜色,并解决中文显示问题。通过简单的步骤设置,可以显著提升使用体验。 ... [详细]
  • 解决vCenter vSphere HA初始化失败的问题
    本文探讨了在集群中遇到的所有vSphere HA主机状态显示‘无法正确安装或配置vSphere HA代理’错误的情况,并详细介绍了排查与解决步骤,包括检查HA初始化错误及安装HA代理的常见故障排除方法。 ... [详细]
  • 本文深入探讨了HTTP请求和响应对象的使用,详细介绍了如何通过响应对象向客户端发送数据、处理中文乱码问题以及常见的HTTP状态码。此外,还涵盖了文件下载、请求重定向、请求转发等高级功能。 ... [详细]
  • 本文详细介绍如何利用已搭建的LAMP(Linux、Apache、MySQL、PHP)环境,快速创建一个基于WordPress的内容管理系统(CMS)。WordPress是一款流行的开源博客平台,适用于个人或小型团队使用。 ... [详细]
  • PHP 过滤器详解
    本文深入探讨了 PHP 中的过滤器机制,包括常见的 $_SERVER 变量、filter_has_var() 函数、filter_id() 函数、filter_input() 函数及其数组形式、filter_list() 函数以及 filter_var() 和其数组形式。同时,详细介绍了各种过滤器的用途和用法。 ... [详细]
  • 本文详细探讨了HTML表单中GET和POST请求的区别,包括它们的工作原理、数据传输方式、安全性及适用场景。同时,通过实例展示了如何在Servlet中处理这两种请求。 ... [详细]
  • 自 Node.js 6.3 版本起,调试功能已内置在核心模块中,无需额外安装 node-inspector 等工具。通过简单的命令即可启动调试模式,并利用 Chrome 浏览器进行高效的代码调试。 ... [详细]
  • 云计算的优势与应用场景
    本文详细探讨了云计算为企业和个人带来的多种优势,包括成本节约、安全性提升、灵活性增强等。同时介绍了云计算的五大核心特点,并结合实际案例进行分析。 ... [详细]
  • 本文介绍如何从JSON格式的文件中提取数据并将其分配给Bash脚本中的变量。我们将探讨具体的命令和工具,帮助你高效地完成这一任务。 ... [详细]
author-avatar
我爱盘小静永远永远
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有