热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Pythonpandas–特别合并/替换

对于pandas操作来说,我有两个这样的数据帧:importpandasaspddfpd.DataFrame({'name':['a',&#

对于pandas操作来说,我有两个这样的数据帧:

import pandas as pd
df = pd.DataFrame({'name': ['a','a','b','b','c','c'], 'id':[1,2,1,2,1,2], 'val1':[0,0,0,0,0,0],'val2':[0,0,0,0,0,0],'val3':[0,0,0,0,0,0]})
id name val1 val2 val3
0 1 a 0 0 0
1 2 a 0 0 0
2 1 b 0 0 0
3 2 b 0 0 0
4 1 c 0 0 0
5 2 c 0 0 0
subdf = pd.DataFrame({'name': ['a','b','c'], 'id':[1,1,2],'val1':[0.3,0.4,0.7], 'val2':[4,5,4]}
id name val1 val2
0 1 a 0.3 4
1 1 b 0.4 5
2 2 c 0.7 4

我想获得输出:

id name val1 val2 val3
0 1 a 0.3 4 0
1 2 a 0.0 0 0
2 1 b 0.4 5 0
3 2 b 0.0 0 0
4 1 c 0.0 0 0
5 2 c 0.7 4 0

但我没有抓住替换的例子,只是添加了我看到的教程中的列/行!

解决方法:

这需要几个步骤,在匹配的列上留下merge,这将创建“x”和“y”,其中存在冲突:

In [25]:
merged = df.merge(subdf, on=['id', 'name'], how='left')
merged
Out[25]:
id name val1_x val2_x val3 val1_y val2_y
0 1 a 0 0 0 0.3 4
1 2 a 0 0 0 NaN NaN
2 1 b 0 0 0 0.4 5
3 2 b 0 0 0 NaN NaN
4 1 c 0 0 0 NaN NaN
5 2 c 0 0 0 0.7 4
In [26]:
# take the values that of interest from the clashes
merged['val1'] = np.max(merged[['val1_x', 'val1_y']], axis=1)
merged['val2'] = np.max(merged[['val2_x', 'val2_y']], axis=1)
merged
Out[26]:
id name val1_x val2_x val3 val1_y val2_y val1 val2
0 1 a 0 0 0 0.3 4 0.3 4
1 2 a 0 0 0 NaN NaN 0.0 0
2 1 b 0 0 0 0.4 5 0.4 5
3 2 b 0 0 0 NaN NaN 0.0 0
4 1 c 0 0 0 NaN NaN 0.0 0
5 2 c 0 0 0 0.7 4 0.7 4
In [27]:
# drop the additional columns
merged = merged.drop(labels=['val1_x', 'val1_y','val2_x', 'val2_y'], axis=1)
merged
Out[27]:
id name val3 val1 val2
0 1 a 0 0.3 4
1 2 a 0 0.0 0
2 1 b 0 0.4 5
3 2 b 0 0.0 0
4 1 c 0 0.0 0
5 2 c 0 0.7 4

另一种方法是在“id”和“name”上对df进行排序,然后调用update

In [30]:
df = df.sort(columns=['id','name'])
subdf = subdf.sort(columns=['id','name'])
df.update(subdf)
df
Out[30]:
id name val1 val2 val3
0 1 a 0.3 4 0
2 2 c 0.7 4 0
4 1 c 0.0 0 0
1 1 b 0.4 5 0
3 2 b 0.0 0 0
5 2 c 0.0 0 0


推荐阅读
  • 本文探讨了利用Python实现高效语音识别技术的方法。通过使用先进的语音处理库和算法,本文详细介绍了如何构建一个准确且高效的语音识别系统。提供的代码示例和实验结果展示了该方法在实际应用中的优越性能。相关文件可从以下链接下载:链接:https://pan.baidu.com/s/1RWNVHuXMQleOrEi5vig_bQ,提取码:p57s。 ... [详细]
  • 【图像分类实战】利用DenseNet在PyTorch中实现秃头识别
    本文详细介绍了如何使用DenseNet模型在PyTorch框架下实现秃头识别。首先,文章概述了项目所需的库和全局参数设置。接着,对图像进行预处理并读取数据集。随后,构建并配置DenseNet模型,设置训练和验证流程。最后,通过测试阶段验证模型性能,并提供了完整的代码实现。本文不仅涵盖了技术细节,还提供了实用的操作指南,适合初学者和有经验的研究人员参考。 ... [详细]
  • 在Python中,是否可以通过使用Tkinter或ttk库创建一个具有自动换行功能的多行标签,并使其宽度能够随着父容器的变化而动态调整?例如,在调整NotePad窗口宽度时,实现类似记事本的自动换行效果。这种功能在设计需要显示长文本的对话框时非常有用,确保文本内容能够完整且美观地展示。 ... [详细]
  • 本文探讨了一种高效的算法,用于生成所有数字(0-9)的六位组合,允许重复使用数字,并确保这些组合的和等于给定的整数N。该算法通过优化搜索策略,显著提高了计算效率,适用于大规模数据处理和组合优化问题。 ... [详细]
  • Python全局解释器锁(GIL)机制详解
    在Python中,线程是操作系统级别的原生线程。为了确保多线程环境下的内存安全,Python虚拟机引入了全局解释器锁(Global Interpreter Lock,简称GIL)。GIL是一种互斥锁,用于保护对解释器状态的访问,防止多个线程同时执行字节码。尽管GIL有助于简化内存管理,但它也限制了多核处理器上多线程程序的并行性能。本文将深入探讨GIL的工作原理及其对Python多线程编程的影响。 ... [详细]
  • 每年,意甲、德甲、英超和西甲等各大足球联赛的赛程表都是球迷们关注的焦点。本文通过 Python 编程实现了一种生成赛程表的方法,该方法基于蛇形环算法。具体而言,将所有球队排列成两列的环形结构,左侧球队对阵右侧球队,首支队伍固定不动,其余队伍按顺时针方向循环移动,从而确保每场比赛不重复。此算法不仅高效,而且易于实现,为赛程安排提供了可靠的解决方案。 ... [详细]
  • 针对图像分类任务的训练方案进行了优化设计。通过引入PyTorch等深度学习框架,利用其丰富的工具包和模块,如 `torch.nn` 和 `torch.nn.functional`,提升了模型的训练效率和分类准确性。优化方案包括数据预处理、模型架构选择和损失函数的设计等方面,旨在提高图像分类任务的整体性能。 ... [详细]
  • 本文详细介绍了使用 Python 进行 MySQL 和 Redis 数据库操作的实战技巧。首先,针对 MySQL 数据库,通过 `pymysql` 模块展示了如何连接和操作数据库,包括建立连接、执行查询和更新等常见操作。接着,文章深入探讨了 Redis 的基本命令和高级功能,如键值存储、列表操作和事务处理。此外,还提供了多个实际案例,帮助读者更好地理解和应用这些技术。 ... [详细]
  • 深入理解 Java 控制结构的全面指南 ... [详细]
  • 如何使用mysql_nd:Python连接MySQL数据库的优雅指南
    无论是进行机器学习、Web开发还是爬虫项目,数据库操作都是必不可少的一环。本文将详细介绍如何使用Python通过 `mysql_nd` 库与 MySQL 数据库进行高效连接和数据交互。内容涵盖以下几个方面: ... [详细]
  • 本课程深入探讨了 Python 中自定义序列类的实现方法,涵盖从基础概念到高级技巧的全面解析。通过实例演示,学员将掌握如何创建支持切片操作的自定义序列对象,并了解 `bisect` 模块在序列处理中的应用。适合希望提升 Python 编程技能的中高级开发者。 ... [详细]
  • 在Ubuntu系统中配置Python环境变量是确保项目顺利运行的关键步骤。本文介绍了如何将Windows上的Django项目迁移到Ubuntu,并解决因虚拟环境导致的模块缺失问题。通过详细的操作指南,帮助读者正确配置虚拟环境,确保所有第三方库都能被正确识别和使用。此外,还提供了一些实用的技巧,如如何检查环境变量配置是否正确,以及如何在多个虚拟环境之间切换。 ... [详细]
  • 通过使用CIFAR-10数据集,本文详细介绍了如何快速掌握Mixup数据增强技术,并展示了该方法在图像分类任务中的显著效果。实验结果表明,Mixup能够有效提高模型的泛化能力和分类精度,为图像识别领域的研究提供了有价值的参考。 ... [详细]
  • 本文介绍了如何利用Apache POI库高效读取Excel文件中的数据。通过实际测试,除了分数被转换为小数存储外,其他数据均能正确读取。若在使用过程中发现任何问题,请及时留言反馈,以便我们进行更新和改进。 ... [详细]
  • 基于收支数据的聚类分析研究
    通过对收支数据进行聚类分析,研究发现聚类结果的解释和验证是关键步骤。为了确保分群的合理性和有效性,需要结合业务背景和实际需求,灵活选择合适的聚类数量。该研究利用Python中的Pandas和Matplotlib库对数据进行了预处理和可视化,为决策提供了科学依据。 ... [详细]
author-avatar
手浪用户2502884343
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有