热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Python–tensorflow.math.multiply()

Python–tensorflow.math.multiply()

Python–tensorflow . math . multiply()

哎哎哎:# t0]https://www . geeksforgeeks . org/python-tensorlow-math-multiply/

TensorFlow 是谷歌为开发机器学习模型和深度学习神经网络而设计的开源 python 库。 multiply() 用于寻找 element wise x*y,支持广播。

语法: tf.math .乘法(x,y,name)

参数:


  • x: 是输入张量。这个张量允许的数据类型是 bfloat16,half,float32,float64,uint8,int8,uint16,int16,int32,int64,complex64,complex128。

  • y: 是与 x 相同数据类型的输入张量。

  • 名称(可选):定义操作的名称。

返回:
返回一个与 x 相同数据类型的张量

例 1:

Python 3


# Importing the library
import tensorflow as tf
# Initializing the input tensor
a = tf.constant([.2, .5, .7, 1], dtype = tf.float64)
b = tf.constant([.1, .3, 1, 5], dtype = tf.float64)
# Printing the input tensor
print('a: ', a)
print('b: ', b)
# Calculating result
res = tf.math.multiply(x = a, y = b)
# Printing the result
print('Result: ', res)

输出:

a: tf.Tensor([0.2 0.5 0.7 1\. ], shape=(4, ), dtype=float64)
b: tf.Tensor([0.1 0.3 1\. 5\. ], shape=(4, ), dtype=float64)
Result: tf.Tensor([0.02 0.15 0.7 5\. ], shape=(4, ), dtype=float64)

例 2: 复数乘法

Python 3


# importing the library
import tensorflow as tf
# Initializing the input tensor
a = tf.constant([-2 + 3j, -5 + 4j, 7 + 2j, 1 + 7j], dtype = tf.complex128)
b = tf.constant([-1 + 2j, -6 + 8j, 8 + 2j, 0 + 1j], dtype = tf.complex128)
# Printing the input tensor
print('a: ', a)
print('b: ', b)
# Calculating result
res = tf.math.multiply(x = a, y = b)
# Printing the result
print('Result: ', res)

输出:

a: tf.Tensor([-2.+3.j -5.+4.j 7.+2.j 1.+7.j], shape=(4, ), dtype=complex128)
b: tf.Tensor([-1.+2.j -6.+8.j 8.+2.j 0.+1.j], shape=(4, ), dtype=complex128)
Result: tf.Tensor([-4\. -7.j -2.-64.j 52.+30.j -7\. +1.j], shape=(4, ), dtype=complex128)


推荐阅读
  • 本文详细介绍了 TensorFlow 的入门实践,特别是使用 MNIST 数据集进行数字识别的项目。文章首先解析了项目文件结构,并解释了各部分的作用,随后逐步讲解了如何通过 TensorFlow 实现基本的神经网络模型。 ... [详细]
  • 在Ubuntu 16.04中使用Anaconda安装TensorFlow
    本文详细介绍了如何在Ubuntu 16.04系统上通过Anaconda环境管理工具安装TensorFlow。首先,需要下载并安装Anaconda,然后配置环境变量以确保系统能够识别Anaconda命令。接着,创建一个特定的Python环境用于安装TensorFlow,并通过指定的镜像源加速安装过程。最后,通过一个简单的线性回归示例验证TensorFlow的安装是否成功。 ... [详细]
  • 深入浅出TensorFlow数据读写机制
    本文详细介绍TensorFlow中的数据读写操作,包括TFRecord文件的创建与读取,以及数据集(dataset)的相关概念和使用方法。 ... [详细]
  • 本文探讨了图像标签的多种分类场景及其在以图搜图技术中的应用,涵盖了从基础理论到实际项目实施的全面解析。 ... [详细]
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 吴恩达推出TensorFlow实践课程,Python基础即可入门,四个月掌握核心技能
    量子位报道,deeplearning.ai最新发布了TensorFlow实践课程,适合希望使用TensorFlow开发AI应用的学习者。该课程涵盖机器学习模型构建、图像识别、自然语言处理及时间序列预测等多个方面。 ... [详细]
  • 吴裕雄探讨混合神经网络模型在深度学习中的应用:结合RNN与CNN优化网络性能
    本文由吴裕雄撰写,深入探讨了如何利用Python、Keras及TensorFlow构建混合神经网络模型,特别是通过结合递归神经网络(RNN)和卷积神经网络(CNN),实现对网络运行效率的有效提升。 ... [详细]
  • Python 工具推荐 | PyHubWeekly 第二十一期:提升命令行体验的五大工具
    本期 PyHubWeekly 为大家精选了 GitHub 上五个优秀的 Python 工具,涵盖金融数据可视化、终端美化、国际化支持、图像增强和远程 Shell 环境配置。欢迎关注并参与项目。 ... [详细]
  • Python并行处理:提升数据处理速度的方法与实践
    本文探讨了如何利用Python进行数据处理的并行化,通过介绍Numba、多进程处理以及Pandas DataFrame上的并行操作等技术,旨在帮助开发者有效提高数据处理效率。 ... [详细]
  • 本文详细介绍如何通过Anaconda 3.5.01快速安装TensorFlow,包括环境配置和具体步骤。 ... [详细]
  • 本文介绍了一个使用Keras框架构建的卷积神经网络(CNN)实例,主要利用了Keras提供的MNIST数据集以及相关的层,如Dense、Dropout、Activation等,构建了一个具有两层卷积和两层全连接层的CNN模型。 ... [详细]
  • 本文探讨了如何在Python中处理长数据的完全显示问题,包括numpy数组、pandas DataFrame以及tensor类型的完整输出设置。 ... [详细]
  • 本教程详细介绍了如何使用 TensorFlow 2.0 构建和训练多层感知机(MLP)网络,涵盖回归和分类任务。通过具体示例和代码实现,帮助初学者快速掌握 TensorFlow 的核心概念和操作。 ... [详细]
  • 深入解析Java枚举及其高级特性
    本文详细介绍了Java枚举的概念、语法、使用规则和应用场景,并探讨了其在实际编程中的高级应用。所有相关内容已收录于GitHub仓库[JavaLearningmanual](https://github.com/Ziphtracks/JavaLearningmanual),欢迎Star并持续关注。 ... [详细]
  • TensorFlow 2.0 中的 Keras 数据归一化实践
    数据预处理是机器学习任务中的关键步骤,特别是在深度学习领域。通过将数据归一化至特定范围,可以在梯度下降过程中实现更快的收敛速度和更高的模型性能。本文探讨了如何使用 TensorFlow 2.0 和 Keras 进行有效的数据归一化。 ... [详细]
author-avatar
lrg冰天雪地789_444
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有