热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Python并发编程–线程通信

在现实生活中,如果一个人团队正在共同完成任务,那么他们之间应该有通信,以便正确完成任务。同样的比喻也适用于线程。在编程中,要减少处理器的理想时间,我们创建了多个线程,并为每个线程分配不同的子

在现实生活中,如果一个人团队正在共同完成任务,那么他们之间应该有通信,以便正确完成任务。 同样的比喻也适用于线程。 在编程中,要减少处理器的理想时间,我们创建了多个线程,并为每个线程分配不同的子任务。 因此,必须有一个通信设施,他们应该互相沟通交流,以同步的方式完成工作。

考虑以下与线程通信相关的重要问题 -



  • 没有性能增益 - 如果无法在线程和进程之间实现适当的通信,那么并发性和并行性的性能收益是没有用的。


  • 完成任务 - 如果线程之间没有适当的相互通信机制,分配的任务将无法正常完成。


  • 比进程间通信更高效 - 线程间通信比进程间通信更高效且更易于使用,因为进程内的所有线程共享相同的地址空间,并且不需要使用共享内存。



线程安全通信的Python数据结构

多线程代码出现了将信息从一个线程传递到另一个线程的问题。 标准的通信原语不能解决这个问题。 因此,需要实现我们自己的组合对象,以便在线程之间共享对象以使通信线程安全。 以下是一些数据结构,它们在进行一些更改后提供线程安全通信 -


1. Set

为了以线程安全的方式使用set数据结构,需要扩展set类来实现我们自己的锁定机制。

以下是一个扩展类的Python示例 -

class extend_class(set):
def __init__(self, *args, **kwargs):
self._lock = Lock()
super(extend_class, self).__init__(*args, **kwargs)
def add(self, elem):
self._lock.acquire()
try:
super(extend_class, self).add(elem)
finally:
self._lock.release()
def delete(self, elem):
self._lock.acquire()
try:
super(extend_class, self).delete(elem)
finally:
self._lock.release()

在上面的例子中,定义了一个名为extend_class的类对象,它继承自Python集合类。 在这个类的构造函数中创建一个锁对象。 现在有两个函数 - add()delete()。 这些函数被定义并且是线程安全的。 它们都依赖于超类功能以及一个键异常。

修饰器
这是线程安全通信的另一个关键方法是使用装饰器。

示例

考虑一个Python示例,展示如何使用装饰器和mminus;

def lock_decorator(method):
def new_deco_method(self, *args, **kwargs):
with self._lock:
return method(self, *args, **kwargs)
return new_deco_method
class Decorator_class(set):
def __init__(self, *args, **kwargs):
self._lock = Lock()
super(Decorator_class, self).__init__(*args, **kwargs)
@lock_decorator
def add(self, *args, **kwargs):
return super(Decorator_class, self).add(elem)
@lock_decorator
def delete(self, *args, **kwargs):
return super(Decorator_class, self).delete(elem)

在上面的例子中,已经定义了一个名为lock_decorator的装饰器方法,该方法从Python方法类继承。 然后在这个类的构造函数中创建一个锁对象。 现在有两个函数 - add()delete()。 这些函数被定义并且是线程安全的。 他们都依靠超类功能和一个键异常。


2. list

列表数据结构对于临时内存存储而言是线程安全,快速以及简单的结构。在Cpython中,GIL可以防止对它们的并发访问。当我们知道列表是线程安全的,但是数据在哪里呢。实际上,该列表的数据不受保护。例如,如果另一个线程试图做同样的事情,则L.append(x)不保证能够返回预期的结果。这是因为尽管append()是一个原子操作并且是线程安全的,但另一个线程试图以并发方式修改列表数据,因此可以看到竞争条件对输出的副作用。

为了解决这类问题并安全地修改数据,我们必须实现一个适当的锁定机制,这进一步确保多个线程不会潜在竞争条件。为了实现适当的锁定机制,可以像前面的例子那样扩展这个类。

列表上的其他一些原子操作如下所示 -

L.append(x)
L1.extend(L2)
x = L[i]
x = L.pop()
L1[i:j] = L2
L.sort()
x = y
x.field = y
D[x] = y
D1.update(D2)
D.keys()

这里 -



  • LL1L2都是列表


  • DD1D2是字典


  • xy是对象


  • ij是整数



3. 队列

如果清单数据不受保护,我们可能不得不面对后果。 可能会得到或删除错误的数据项,竞争条件。 这就是为什么建议使用队列数据结构的原因。 一个真实世界的排队示例可以是单车道单向道路,车辆首先进入,首先退出。 售票窗口和公共汽车站的队列中可以看到更多真实世界的例子。

队列是默认的线程安全数据结构,我们不必担心实现复杂的锁定机制。 Python提供了应用程序中使用不同类型队列的模块。

队列类型

在本节中,我们将获得关于不同类型的队列的信息。 Python提供了三种从queue模块使用的队列选项 -


  • 正常队列(FIFO,先进先出)

  • 后进先出,后进先出

  • 优先级

我们将在随后的章节中了解不同的队列。

正常队列(FIFO,先进先出)
它是Python提供的最常用的队列实现。 在这种先排队的机制中,首先得到服务。 FIFO也被称为正常队列。 FIFO队列可以表示如下 -

FIFO队列的Python实现

在python中,FIFO队列可以用单线程和多线程来实现。

具有单线程的FIFO队列
要实现单线程的FIFO队列,Queue类将实现一个基本的先进先出容器。 使用put()将元素添加到序列的一个“结尾”,并使用get()从另一端移除元素。

示例

以下是用单线程实现FIFO队列的Python程序 -

import queue
q = queue.Queue()
for i in range(8):
q.put("item-" + str(i))
while not q.empty():
print (q.get(), end = " ")

执行上面示例代码,得到以下结果 -

item-0 item-1 item-2 item-3 item-4 item-5 item-6 item-7

输出结果显示上面的程序使用单个线程来说明这些元素将按照它们插入的顺序从队列中移除。

具有多个线程的FIFO队列

为了实现多线程的FIFO,需要从queue模块扩展来定义myqueue()函数。 get()put()方法的工作方式与上面讨论的一样,只用单线程实现FIFO队列。 然后为了使它成为多线程,我们需要声明和实例化线程。 这些线程将以FIFO方式使用队列。

示例
以下是用于实现具有多个线程的FIFO队列的Python程序 -

import threading
import queue
import random
import time
def myqueue(queue):
while not queue.empty():
item = queue.get()
if item is None:
break
print("{} removed {} from the queue".format(threading.current_thread(), item))
queue.task_done()
time.sleep(2)
q = queue.Queue()
for i in range(5):
q.put(i)
threads = []
for i in range(4):
thread = threading.Thread(target=myqueue, args=(q,))
thread.start()
threads.append(thread)
for thread in threads:
thread.join()

执行上面示例代码,得到以下结果 -

removed 0 from the queue
removed 1 from the queue
removed 2 from the queue
removed 3 from the queue
removed 4 from the queue


4. LIFO,后进先出队列

队列使用与FIFO(先进先出)队列完全相反的类比。 在这个队列机制中,最后一个将首先获得服务。 这与实现堆栈数据结构相似。 LIFO队列在实施深度优先搜索时非常有用,如人工智能算法。

LIFO队列的Python实现
在python中,LIFO队列可以用单线程和多线程来实现。

单线程的LIFO队列
要用单线程实现LIFO队列,Queue类将使用结构Queue.LifoQueue来实现基本的后进先出容器。 现在,在调用put()时,将元素添加到容器的头部,并使用get()从头部移除。

示例
以下是用单线程实现LIFO队列的Python程序 -

import queue
q = queue.LifoQueue()
for i in range(8):
q.put("item-" + str(i))
while not q.empty():
print (q.get(), end=" ")

执行上面示例代码,得到以下结果 -

item-7 item-6 item-5 item-4 item-3 item-2 item-1 item-0

输出显示上述程序使用单个线程来说明元素将以插入的相反顺序从队列中移除。

带有多个线程的LIFO队列

这个实现与使用多线程实现FIFO队列相似。 唯一的区别是需要使用Queue类,该类将使用结构Queue.LifoQueue来实现基本的后进先出容器。

示例
以下是用于实现具有多个线程的LIFO队列的Python程序 -

import threading
import queue
import random
import time
def myqueue(queue):
while not queue.empty():
item = queue.get()
if item is None:
break
print("{} removed {} from the queue".format(threading.current_thread(), item))
queue.task_done()
time.sleep(2)
q = queue.LifoQueue()
for i in range(5):
q.put(i)
threads = []
for i in range(4):
thread = threading.Thread(target=myqueue, args=(q,))
thread.start()
threads.append(thread)
for thread in threads:
thread.join()

执行上面示例代码,得到以下结果 -

removed 4 from the queue
removed 3 from the queue
removed 2 from the queue
removed 1 from the queue
removed 0 from the queue

优先队列

在FIFO和LIFO队列中,项目顺序与插入顺序有关。 但是,有很多情况下优先级比插入顺序更重要。 让我们考虑一个真实世界的例子。 假设机场的安保人员正在检查不同类别的人员。 VVIP的人员,航空公司工作人员,海关人员,类别可能会优先检查,而不是像到平民那样根据到达情况进行检查。

需要考虑优先队列的另一个重要方面是如何开发任务调度器。 一种常见的设计是在队列中优先处理最具代理性的任务。 该数据结构可用于根据队列的优先级值从队列中提取项目。

优先队列的Python实现
在python中,优先级队列可以用单线程和多线程来实现。

单线程优先队列

要实现单线程优先队列,Queue类将使用结构Queue.PriorityQueue在优先级容器上实现任务。 现在,在调用put()时,元素将添加一个值,其中最低值将具有最高优先级,并因此使用get()首先检索。

示例

考虑下面的Python程序来实现单线程的优先级队列 -

import queue as Q
p_queue = Q.PriorityQueue()
p_queue.put((2, 'Urgent'))
p_queue.put((1, 'Most Urgent'))
p_queue.put((10, 'Nothing important'))
prio_queue.put((5, 'Important'))
while not p_queue.empty():
item = p_queue.get()
print('%s - %s' % item)

执行上面示例代码,得到以下结果 -

1 – Most Urgent
2 - Urgent
5 - Important
10 – Nothing important

在上面的输出中,可以看到队列已经存储了基于优先级的项目 - 较少的值具有高优先级。

具有多线程的优先队列

该实现类似于具有多个线程的FIFO和LIFO队列的实现。 唯一的区别是需要使用Queue类通过使用结构Queue.PriorityQueue来初始化优先级。 另一个区别是队列的生成方式。 在下面给出的例子中,它将生成两个相同的数据集。

示例
以下Python程序有助于实现具有多个线程的优先级队列 -

import threading
import queue
import random
import time
def myqueue(queue):
while not queue.empty():
item = queue.get()
if item is None:
break
print("{} removed {} from the queue".format(threading.current_thread(), item))
queue.task_done()
time.sleep(1)
q = queue.PriorityQueue()
for i in range(5):
q.put(i,1)
for i in range(5):
q.put(i,1)
threads = []
for i in range(2):
thread = threading.Thread(target=myqueue, args=(q,))
thread.start()
threads.append(thread)
for thread in threads:
thread.join()

执行上面示例代码,得到以下结果 -

removed 0 from the queue
removed 0 from the queue
removed 1 from the queue
removed 1 from the queue
removed 2 from the queue
removed 2 from the queue
removed 3 from the queue
removed 3 from the queue
removed 4 from the queue
removed 4 from the queue


推荐阅读
  • 深入理解线程、进程、多线程、线程池
    本文以QT的方式来走进线程池的应用、线程、进程、线程池、线程锁、互斥量、信号量、线程同步等的详解,一文让你小白变大神!为什么要使用多线程、线程锁、互斥量、信号量?为什么需要线程 ... [详细]
  • 深入解析Linux下的I/O多路转接epoll技术
    本文深入解析了Linux下的I/O多路转接epoll技术,介绍了select和poll函数的问题,以及epoll函数的设计和优点。同时讲解了epoll函数的使用方法,包括epoll_create和epoll_ctl两个系统调用。 ... [详细]
  • 本文介绍了Python高级网络编程及TCP/IP协议簇的OSI七层模型。首先简单介绍了七层模型的各层及其封装解封装过程。然后讨论了程序开发中涉及到的网络通信内容,主要包括TCP协议、UDP协议和IPV4协议。最后还介绍了socket编程、聊天socket实现、远程执行命令、上传文件、socketserver及其源码分析等相关内容。 ... [详细]
  • Java String与StringBuffer的区别及其应用场景
    本文主要介绍了Java中String和StringBuffer的区别,String是不可变的,而StringBuffer是可变的。StringBuffer在进行字符串处理时不生成新的对象,内存使用上要优于String类。因此,在需要频繁对字符串进行修改的情况下,使用StringBuffer更加适合。同时,文章还介绍了String和StringBuffer的应用场景。 ... [详细]
  • Tomcat/Jetty为何选择扩展线程池而不是使用JDK原生线程池?
    本文探讨了Tomcat和Jetty选择扩展线程池而不是使用JDK原生线程池的原因。通过比较IO密集型任务和CPU密集型任务的特点,解释了为何Tomcat和Jetty需要扩展线程池来提高并发度和任务处理速度。同时,介绍了JDK原生线程池的工作流程。 ... [详细]
  • 深入理解Kafka服务端请求队列中请求的处理
    本文深入分析了Kafka服务端请求队列中请求的处理过程,详细介绍了请求的封装和放入请求队列的过程,以及处理请求的线程池的创建和容量设置。通过场景分析、图示说明和源码分析,帮助读者更好地理解Kafka服务端的工作原理。 ... [详细]
  • 李逍遥寻找仙药的迷阵之旅
    本文讲述了少年李逍遥为了救治婶婶的病情,前往仙灵岛寻找仙药的故事。他需要穿越一个由M×N个方格组成的迷阵,有些方格内有怪物,有些方格是安全的。李逍遥需要避开有怪物的方格,并经过最少的方格,找到仙药。在寻找的过程中,他还会遇到神秘人物。本文提供了一个迷阵样例及李逍遥找到仙药的路线。 ... [详细]
  • Android工程师面试准备及设计模式使用场景
    本文介绍了Android工程师面试准备的经验,包括面试流程和重点准备内容。同时,还介绍了建造者模式的使用场景,以及在Android开发中的具体应用。 ... [详细]
  • 重入锁(ReentrantLock)学习及实现原理
    本文介绍了重入锁(ReentrantLock)的学习及实现原理。在学习synchronized的基础上,重入锁提供了更多的灵活性和功能。文章详细介绍了重入锁的特性、使用方法和实现原理,并提供了类图和测试代码供读者参考。重入锁支持重入和公平与非公平两种实现方式,通过对比和分析,读者可以更好地理解和应用重入锁。 ... [详细]
  • STL迭代器的种类及其功能介绍
    本文介绍了标准模板库(STL)定义的五种迭代器的种类和功能。通过图表展示了这几种迭代器之间的关系,并详细描述了各个迭代器的功能和使用方法。其中,输入迭代器用于从容器中读取元素,输出迭代器用于向容器中写入元素,正向迭代器是输入迭代器和输出迭代器的组合。本文的目的是帮助读者更好地理解STL迭代器的使用方法和特点。 ... [详细]
  • linux进阶50——无锁CAS
    1.概念比较并交换(compareandswap,CAS),是原⼦操作的⼀种,可⽤于在多线程编程中实现不被打断的数据交换操作࿰ ... [详细]
  • 第七课主要内容:多进程多线程FIFO,LIFO,优先队列线程局部变量进程与线程的选择线程池异步IO概念及twisted案例股票数据抓取 ... [详细]
  • [翻译]PyCairo指南裁剪和masking
    裁剪和masking在PyCairo指南的这个部分,我么将讨论裁剪和masking操作。裁剪裁剪就是将图形的绘制限定在一定的区域内。这样做有一些效率的因素࿰ ... [详细]
  • java线程池的实现原理源码分析
    这篇文章主要介绍“java线程池的实现原理源码分析”,在日常操作中,相信很多人在java线程池的实现原理源码分析问题上存在疑惑,小编查阅了各式资 ... [详细]
  • 开发笔记:python协程的理解
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了python协程的理解相关的知识,希望对你有一定的参考价值。一、介绍什么是并发?并发的本质就是 ... [详细]
author-avatar
花颖年华
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有