热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

《PyTorch深度学习实践》学习笔记1——Overview

Overview课程来源:PyTorch深度学习实践——河北工业大学《PyTorch深度学习实践》完结合集_哔哩哔哩_bilibili1.PyTorch简介​
Overview

课程来源:PyTorch深度学习实践——河北工业大学

《PyTorch深度学习实践》完结合集_哔哩哔哩_bilibili

1.PyTorch简介

​ PyTorch是一个基于Torch的Python开源机器学习库,用于自然语言处理等应用程序。它主要由Facebookd的人工智能小组开发,不仅能够 实现强大的GPU加速,同时还支持动态神经网络。

2.与TensorFlow区别

​ pytorch是一个动态的框架,而TensorFlow是静态框架(2.x版本也为动态框架优先)。静态框架就是指我们首先构建一个计算图,构建完成之后这个图就不再变化,通过给变量赋值来进行计算,这样势必导致我们需要修改逻辑的时候相对比较复杂,而动态图修改计算逻辑相对比较简单。简单举例如下,例如假设我们需要实现如下计算图:

img

TF代码:

import numpy as np
import tensorflow as tf
np.random.seed(0)
raw,col=3,4
x=tf.placeholder(tf.float32)
y=tf.placeholder(tf.float32)
z=tf.placeholder(tf.float32)
a=x*y
b=a+z
c=tf.reduce_sum(b)
grad_x,grad_y,grad_z=tf.gradients(c,[x,y,z])
with tf.Session()as sess:values={x:np.random.randn(raw,col),y: np.random.randn(raw, col),z: np.random.randn(raw, col)}out=sess.run([c,grad_x,grad_y,grad_z],feed_dict=values)c_val,grad_x_val,grad_y_val,grad_z_val=outprint(c_val,grad_x_val,grad_y_val,grad_z_val)

PyTorch代码:

import torch
from torch.autograd import Variable
raw,col=3,4
x=Variable(torch.randn(raw,col),requires_grad=True)
y=Variable(torch.randn(raw,col),requires_grad=True)
z=Variable(torch.randn(raw,col),requires_grad=True)
a=x*y
b=a+z
c=torch.sum(b)
c.backward()
print(x.grad.data)
print(y.grad.data)
print(z.grad.data)

​ 可以发现二者都包含了建立前向计算等过程,但是相对来说PyTorch代码比较简短一些,相对也比较灵活一些。

3.PyTorch安装

网上相关教程很多,不再赘述,附其中一个教程:

安装PyTorch详细过程_MCYZSF的博客-CSDN博客_pytorch安装


推荐阅读
author-avatar
手机用户2602909197
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有